
kaaengine

Mariusz Okulanis, Marcin Labuz, Pawel Roman

Jul 04, 2022

CONTENTS:

1 Tutorial 3
1.1 Part 1: Engine and window . 3
1.2 Part 2: Sprites and nodes . 6
1.3 Part 3: Organizing the game code . 14
1.4 Part 4: Handling Input . 22
1.5 Part 5: Physics . 27
1.6 Part 6: Sound effects and music . 46
1.7 Part 7: Drawing text . 49
1.8 Part 8: Working with multiple scenes . 52
1.9 Part 9: The camera . 55
1.10 Part 10: Transitions . 57
1.11 Part 11: Building executable file and distributing via Steam . 62

2 Kaa engine Reference 65
2.1 audio — Sound effects and music . 65
2.2 colors — Wrapper class for colors . 67
2.3 easings — Easing effects for transitions . 68
2.4 engine — Engine and Scenes: The core of your game . 70
2.5 fonts — Drawing text on screen . 84
2.6 geometry — wrapper classes for vectors, segments, polygons etc. 86
2.7 input — Handling input from keyboard, mouse and controllers 94
2.8 log — kaaengine logging settings . 116
2.9 nodes — Your objects on the scene . 117
2.10 physics — A 2D physics system, with rigid bodies, collisions and more! 124
2.11 statistics — Statistics module . 135
2.12 sprites — Using image assets . 137
2.13 timers — a simple timer . 139
2.14 transitions — A quick and easy way to automate transforming your nodes 140
2.15 All kaa imports cheat sheet . 148

Python Module Index 149

Index 151

i

ii

kaaengine

Welcome to kaa - the 2D games engine for humans, written in python! You will be able to write 2D games quickly
and efficiently, working with simple and intuitive interfaces that follow the zen of python philosophy. Windows is a
first class citizen.

Installation:

pip install kaaengine

CONTENTS: 1

https://en.wikipedia.org/wiki/Zen_of_Python

kaaengine

2 CONTENTS:

CHAPTER

ONE

TUTORIAL

1.1 Part 1: Engine and window

By the end of this tutorial you will code a complete game: a top-down shooter with animations, physics, sounds, basic
AI, HUD display and multiple scenes. You will be surprised how easy and intuitive it is with the kaa engine.

With just about 400 lines of python code you’ll build this game:

Parts 1 and 2 of the tutorial are explaining basic concepts of the engine - you shouldn’t skip them, even if you’re an
experienced developer. The actual game development starts in Part 3.

We encourage you to make experiments on your own during the tutorial. If you get lost in the process, just check out
the tutorial code - it’s available in this git repository

Have fun!

1.1.1 Installing kaaengine

To install kaaengine:

pip install kaaengine

NOTE Kaaengine requires python 3.X. The tutorial assumes you’re using python 3.6.X or newer.

1.1.2 Hello world!

To run a game you need to declare and create the first scene, initialize the engine and run the scene. Create a folder
for your game and create a file named main.py inside the folder. It will be an “entry point” of your game. Put the
following code inside main.py:

from kaa.engine import Engine, Scene
from kaa.geometry import Vector

class MyScene(Scene):

def update(self, dt): # this method is your game loop
pass # your game code will live here!

if __name__ == "__main__":
with Engine(virtual_resolution=Vector(800, 600)) as engine:

my_scene = MyScene() # create the scene
engine.run(my_scene) # run the scene

3

https://github.com/PawelRoman/kaa-tutorial

kaaengine

Start the game by running:

python main.py

You should see a 800x600 window with a black background. Congratulations, you got the game running!

1.1.3 Understanding virtual resolution

Let’s now explain what virtual resolution is and how it’s different from a monitor screen resolution. When writing a
game you would like to have a consistent way of referencing coordinates, independent from the screen resolution the
game is running on. So for example when you draw some image on position (100, 200) you would like it to always be
the same (100, 200) position on 1366x768 laptop screen, 1920x1060 full HD monitor or any other of dozens display
resolutions out there.

That’s where virtual resolution concept comes in. You declare a resolution for your game just once, when initializing
the engine, and the engine will always use exactly this resolution. If you run the game in a window larger than declared
virtual resolution, the engine will stretch the game’s frame buffer (actual draw area). If you run it in a window smaller
than declared virtual resolution, the engine will shrink it.

Let’s test this feature by declaring window size different than the virtual resolution. Let’s also tell the renderer to paint
the frame buffer with a different color so we can see the results.

Add the following imports to your code:

from kaa.colors import Color

Then modify the block where the engine is initialized:

with Engine(virtual_resolution=Vector(800, 600)) as engine:
set window properties
engine.window.size = Vector(1000, 600)
engine.window.title = "My first kaa game!"
create a scene
my_scene = MyScene()
my_scene.clear_color = Color(0.1, 0.1, 0.1, 1) # using RGBA with values between

→˓0 and 1
run the scene:
engine.run(my_scene)

Run the game again. This time you will see a 1000x600 window with a 800x600 area colored in light gray. The
800x600 area is accessible for the engine to draw your game contents. The engine won’t be able to draw anything
outside that area. The size of the area is 800x600 because that’s the virtual_resolution we set when initializing the
engine.

Try resizing the game window and see how the engine shrinks or stretches out the frame buffer area. As you may
expect, anything your game will draw inside the area will shrink or stretch accordingly.

You have probably noticed that the engine tries to maintain the aspect ratio (width to height proportions) of the grey
drawable area. We call this “adaptive stretch mode” - this is the default mode. It works like this:

from kaa.engine import VirtualResolutionMode

And then pass it when initalizing the engine:

with Engine(virtual_resolution=Vector(800, 600), virtual_resolution_
→˓mode=VirtualResolutionMode.adaptive_stretch) as engine:

...

4 Chapter 1. Tutorial

https://en.wikipedia.org/wiki/Display_resolution#/media/File:Vector_Video_Standards8.svg
https://en.wikipedia.org/wiki/Display_resolution#/media/File:Vector_Video_Standards8.svg

kaaengine

You can tell the engine to use the following modes when adjusting your virtual resolution to the window:

• VirtualResolutionMode.adaptive_stretch - the default mode. The drawable area will adapt to
window size, maintaining aspect ratio and leaving black padded areas outside

• VirtualResolutionMode.aggresive_stretch - the drawable area will always fill the entire window
- aspect ratio may not be maintained while stretching.

• VirtualResolutionMode.no_stretch - no stretching applied, leaving black padded areas if window
is larger than virtual resolution size

Note: It is possible to change the virtual resolution size and mode even as the game is running.

1.1.4 Fullscreen mode

Running the game in fullscreen is very easy:

engine.window.fullscreen = True

The engine will resize the window to fit the entire screen and remove window’s top bar and borders. If you select the
window size manually in addition to setting fullscreen to True, the selected size will be ignored.

Kaa engine allows to alt-tab out of the game running in fullscreen.

Note: It is possible to toggle fullscreen mode and change other window properties even as the game is running.

1.1.5 End of Part 1 - full code

Feel free to experiment with window and renderer properties. Then use the following main.py content below and
proceed to Part 2 of the tutorial

from kaa.engine import Engine, Scene, VirtualResolutionMode
from kaa.geometry import Vector

class MyScene(Scene):

def update(self, dt):
pass

with Engine(virtual_resolution=Vector(800, 600)) as engine:
set window properties
engine.window.size = Vector(800, 600)
engine.window.title = "My first kaa game!"
initialize and run the scene
my_scene = MyScene()
engine.run(my_scene)

1.1. Part 1: Engine and window 5

kaaengine

1.2 Part 2: Sprites and nodes

In a previous chapter we have covered some properties of engine, window and renderer and were able to run a game
showing empty screen. Let’s start drawing some actual objects in our game!

1.2.1 Loading images from files

In order to draw anything, we need to load an image file first. For this demo we will use a prepared package of assets,
available herewhich includes full set of images, sounds and fonts for the tutorial. Download the file and unpack
it inside the folder with main.py. You should get the following folder structure:

my_game/
assets/

gfx/
arrow.png
..... other image files

sfx/
.... sound effect files

music/
.... music files

fonts/
.... font files

main.py

Let’s now load the first image (arrow.png). Add the following imports at the top of the main.py

from kaa.sprites import Sprite
import os

Then add __init__() method to MyScene and load our image there:

def __init__(self):
super().__init__()
arrow_sprite = Sprite(os.path.join('assets', 'gfx', 'arrow.png'))

Kaa engine loads images to objects called Sprites. With the image loaded, we can create the first few in-game objects
(which will use the same Sprite).

1.2.2 Drawing objects on the screen

Object instances present on the scene are called Nodes. Let’s create three arrow objects (three Nodes) using the arrow
sprite.

from kaa.nodes import Node

def __init__(self):
super().__init__()
self.arrow_sprite = Sprite(os.path.join('assets', 'gfx', 'arrow.png'))
self.arrow1 = Node(sprite=self.arrow_sprite, position=Vector(200, 200)) #

→˓default position is Vector(0,0)
self.arrow2 = Node(sprite=self.arrow_sprite, position=Vector(400, 300))
self.arrow3 = Node(sprite=self.arrow_sprite, position=Vector(600, 500))

6 Chapter 1. Tutorial

kaaengine

Run the game and. . . No objects are visible on the screen! It’s because we created them but did not add them to the
Scene. A shameful display! Let’s fix it. The Scene holds a tree-like structure of Nodes, and always has the “root”
Node. Let’s add our objects as children of the root node:

def __init__(self):
super().__init__()
self.arrow_sprite = Sprite(os.path.join('assets', 'gfx', 'arrow.png'))
self.arrow1 = Node(sprite=self.arrow_sprite, position=Vector(200, 200))
self.arrow2 = Node(sprite=self.arrow_sprite, position=Vector(400, 300))
self.arrow3 = Node(sprite=self.arrow_sprite, position=Vector(600, 500))
self.root.add_child(self.arrow1)
self.root.add_child(self.arrow2)
self.root.add_child(self.arrow3)

Run the game again. Looks much better doesn’t it? The arrows appear exactly where we put them.

Note: Sprites are immutable. Think of them as wrapper objects for image files.

1.2.3 Moving objects around

To move an object to a different position, simply set a new position:

def __init__(self):
... previous code...
self.arrow1.position = Vector(360, 285)

Run the game and check out the results!

Note: position’s x and y can be floats, e.g. arrow1.position = Vector(360.45, 285.998) they can
also be negative e.g. arrow1.position = Vector(-50, -10)

1.2.4 Using z-index

Hmm, arrow1 now overlaps arrow2, but what decides which one is displayed on top? Long story short: nothing
decides, it is unpredictable. Let’s take control by assigning objects a z-index. Object with a bigger z-index will always
be rendered on top of the objects with smaller z-index.

def __init__(self):
... previous code...
self.arrow1.z_index = 1 # note: default z_index is 0

Run the game and see that arrow1 is always drawn on top of arrow2.

1.2.5 Rotating objects

To rotate an object, simply set the rotation_degrees property.

def __init__(self):
... previous code...
self.arrow1.rotation_degrees = 45 # note: default rotation_degrees is 0

1.2. Part 2: Sprites and nodes 7

kaaengine

Notice that you can set rotation_degrees to more than 360 degrees or to negative values.

Those more mathematically inclined can use radians. 45 degrees should be pi/ 4, right? Use rotation property on
a node:

import math
self.arrow1.rotation = math.pi / 4

Run the game and check for yourself - arrow1 rotated 45 degrees!

1.2.6 Scaling objects

To scale an object in X or Y axis (or both), use the scale property. Pass a Vector object, where vector’s x,y values
are scaling factors for x and y axis respectively. 1 is the default scale, 2 will enlarge it twice, passing 0.5 will shrink it
50%, etc.

self.arrow1.scale = Vector(0.5, 1) # note: default is Vector(1,1)

Re-run the game and see how X axis of the arrow was scaled down.

1.2.7 Aligning object’s ‘origin’ (the anchor point)

Let’s ask a curious question. Our ‘arrow’ object has spatial dimentions: 100px width and 50px height. We tell the
game to draw it at some specific position e.g. (300, 200). But what does this actually mean? Which pixel of the arrow
will really be drawn at position (300, 200)? The top-left pixel? Or the central pixel? Or maybe some other pixel?

By default it’s the central pixel. That anchor point of a node is called ‘origin’. Let’s visualize the idea by drawing a
‘pixel marker’ image in position of arrow2 and arrow3

def __init__(self):
... previous code...
create pixel marker sprite
self.pixel_marker_sprite = Sprite(os.path.join('assets', 'gfx', 'pixel-marker.png

→˓'))
create pixel_marker 1 in the same spot as arrow2 (but with bigger z-index so we

→˓can see it)
self.pixel_marker1 = Node(sprite=self.pixel_marker_sprite, position=Vector(400,

→˓300), z_index=100)
create pixel_marker 2 in the same spot as arrow3
self.pixel_marker2 = Node(sprite=self.pixel_marker_sprite, position=Vector(600,

→˓500), z_index=100)
add pixel markers to the scene
self.root.add_child(self.pixel_marker1)
self.root.add_child(self.pixel_marker2)

Run the game and see the markers appear on top of arrows in the central position.

Now, let’s change just one thing: origin_alignment of arrow 3

from kaa.geometry import Alignment

def __init__(self):
... previous code...
self.arrow3.origin_alignment = Alignment.right # default is Alignment.center

8 Chapter 1. Tutorial

kaaengine

Re-run the game and see how arrow3 is now drawn in a different place! We did not change its position, just the origin
alignment. Not surprisingly, we can see that origin marker is to the right of the node’s rectangle.

You can set the origin to be in one of the 9 standard positions: top-left, top, top-right, left, central (default), right,
bottom-left, bottom and bottom-right. The node’s rectangular shape will be drawn according to origin position.

All transformations such as positioning, scaling or rotating are applied in relation to the origin. We’ll see that in
practice in the next section.

Note: What if you need a non-standard position for node’s origin? You can achieve that by using two nodes in a
parent - child relation. It’s described in more detail in one of the next sections.

1.2.8 Updating state of objects

So far, we’ve been writing our code in the Scene’s __init__ method. This is a standard practice to create an initial
state of the scene. Let’s now try to update our objects in real-time, as the game is running!

Every scene has update(dt) function which will be called by the engine in a loop (with maximum frequency of 60
times per second). The dt parameter is an integer value how many milliseconds had passed since the last update call.
You will implement most of your game logic inside the update function.

Let’s get to it. Modify the update function in MyScene class:

def update(self, dt):
.... previous code
self.arrow2.rotation_degrees += 1 # rotating 1 degree PER FRAME (not the best

→˓design)
self.arrow3.rotation_degrees += 90 * dt / 1000 # rotating 90 degrees PER SECOND

→˓(good design!)

Run the game and notice how the arrows rotate around their respective origin points. It’s also worth noting that it’s
generally better to include dt in all formulas which transform game objects. Rotating, moving, or generally applying
any other transformation by a fixed value per frame can lead to problems because it is not guaranteed that frame time
(dt) will always be identical. Some frames may take longer to process than others and the visible transformations
would suddenly speed up or slow down, confusing the player. Thus it’s usually better to apply transformations per
second.

1.2.9 Objects can have child objects

So far we’ve been adding objects (Nodes) to the root Node of the scene. But each node we create can have its own
child nodes, those child nodes can have their own children and so on.

All transformations applied to a node are automatically applied to all its child nodes. Let’s check this out in practice.
Add the following code to the __init__ function of the Scene.

def __init__(self):
.... previous code
self.green_arrow_sprite = Sprite(os.path.join('assets', 'gfx', 'arrow-green.png'))
self.child_arrow1 = Node(sprite=self.green_arrow_sprite, position=Vector(0,0),

→˓rotation_degrees=90, z_index=1)
self.arrow3.add_child(self.child_arrow1)

Run the game and check out the result. First thing you have probably noticed is that we set child_arrow1’s position to
(0,0) yet the green arrow is being shown at (600, 500)! This is because child node’s position value is not absolute
but relative to the parent. Since parent’s position is (600, 500) and child’s offset is (0, 0) therefore calculated

1.2. Part 2: Sprites and nodes 9

kaaengine

child position is (600, 500). As you have noticed the child arrow is rotating together with the parent, rotated (again,
relatively) by +90 degrees.

It is very important to remember that position, scale and rotation of each node are always relative to their parent node.
There is a way to get an absolute position, scale or rotation of a Node:

print(self.arrow3.absolute_position)
print(self.arrow3.absolute_rotation)
print(self.arrow3.absolute_rotation_degrees)
print(self.arrow3.absolute_scale)

Take some time to experiment with the parent-child system. Try changing child and parent node’s properties such
as position, origin_alignment, rotation, scaling etc., try updating both nodes properties inside update() function and
observe the results.

Note: You can add an empty Node (without image, just Node(position=Vector(x, y)) just to hold a position
and then add a child with any desired position offset. This simple trick allows for a node to have a custom origin
alignment, not limited to the 9 standard origin_alignment values.

1.2.10 Showing and hiding objects

If you need to hide or show a node, use visible property:

my_node.visible = False # default is True

Hiding a node will automatically hide all its child nodes.

1.2.11 Introducing animations

So far we’ve been using single-frame images. Kaa engine supports frame-by-frame sprite animations. Take a look at
assets/gfx/explosion.png file. It is a frame by frame animation of an explosion, frame size is 100x100 and
there are 75 actual frames in the file.

Creating animation is a two step process:

First, we need to ‘cut’ each frame from the explosion.png file and make it a separate Sprite. In other words we
need to have 75 Sprites, one for each frame. Fortunately we don’t need to do that manually, there’s a helper function
for slicing spritesheets: split_spritesheet. Let’s use it.

from kaa.sprites import Sprite, split_spritesheet

def __init__(self):
.... previous code
self.explosion_spritesheet = Sprite(os.path.join('assets', 'gfx', 'explosion.png

→˓')) # laod the whole spritesheet
self.explosion_frames = split_spritesheet(self.explosion_spritesheet, frame_

→˓dimensions=Vector(100,100),
frames_count=75) # create 75 separate <Sprite> objects

The function is rather self-explanatory, it takes a sprite, goes through it left to right and top to bottom, cutting out
frames using specified frame dimensions. It stops after frames_count frames.

The second step is to create an animation, and assign it to a node. We then add the Node to the scene:

10 Chapter 1. Tutorial

kaaengine

from kaa.transitions import NodeSpriteTransition

def __init__(self):
.... previous code
explosion_animation = NodeSpriteTransition(self.explosion_frames, duration=1000,

→˓loops=0) # create animation
self.explosion = Node(position=Vector(600, 150), transition=explosion_animation)

→˓# create node
self.root.add_child(self.explosion) # add node to scene

Few things demand explanation here. First, the seemingly weird name of the animation object. Why is it called
NodeSpriteTransition, not just SpriteAnimation or something similar? Why is it imported from kaa.
transitions namespace ? The reason is because it’s a part of much more general mechanism called. . . transitions!
Transitions are recipes how node’s property should evolve over time. In this case the evolving property is a sprite, but
as you will see in the Part 9 of the tutorial there are also transitions for properties such as position, rotation, scale,
color and others. The mechanism allows to ‘change’ those properties over time just like we change the sprite over
time. That also explains why node property is called transition.

Let’s look at the NodeSpriteTransition parameters. First one is obviously a list of frames, the duration
tells how long the animation should take (in miliseconds). The loops parameter tells how many times the animation
should repeat. 0 means infinite number of repetitions.

Run the game and behold the animated explosion, if you haven’t yet!

Note: All transitions, including NodeSpriteTransition are immutable which means if you need to create a
transition with different parameters, you need to create a new transition object. You can re-use the same transition on
multiple nodes though.

Let’s illustrate this on example. Let’s use the same set of frames to create a new animation: longer duration, with 3
loops instead of the infinite loop, and running back and forth. Then let’s add two explosion Nodes using that animation

def __init__(self):
.... previous code
explosion_animation_long = NodeSpriteTransition(self.explosion_frames,

→˓duration=4000, loops=3,
back_and_forth=True) # create

→˓animation
self.explosion2 = Node(position=Vector(100, 400), transition=explosion_animation_

→˓long)
self.explosion3 = Node(position=Vector(200, 500), transition=explosion_animation_

→˓long)
self.root.add_child(self.explosion2)
self.root.add_child(self.explosion3)

Run the game and check out the new explosions. We’ve also learned about back_and_forth flag on the
NodeSpriteTransition!

1.2.12 How to crop a Sprite

What if you want to crop the Sprite manually? Use crop() method on Sprite object, getting a new Sprite

new_sprite = self.arrow1.crop(Vector(5,5), Vector(10,20))

The example above will create a new, 10x20 px Sprite from arrow1, starting the crop from position (5,5).

1.2. Part 2: Sprites and nodes 11

kaaengine

1.2.13 Controlling animations manually

If you want to take full control of the animation you need to set each frame manually (set the sprite on given Node
manually). It’s entirely up to you how you do that, let’s just say that there’s something like custom transitions. We’ll
learn more about transitions in Chapter 10 of the tutorual

1.2.14 Setting a lifetime of an object

For every Node you create you can set a lifetime property. It is a number of miliseconds after which the node will
be automatically removed from the scene. Just remember that the timer starts ticking from the moment of adding node
to the scene, not from the moment of creating the Node object. If a node is already added to the Scene, the timer starts
immediately.

Let’s set lifetime property on one of the nodes:

self.explosion3.lifetime = 5000

Run the game, and observe that the node gets removed after 5 seconds.

1.2.15 Deleting objects from the scene

You will of course need to remove Nodes from the scene programmatically as well. It is very easy, just use the
delete() method on the Node you wish to remove.

some_node.delete()

The node will get removed from the scene immediately. If it has child nodes, they will be removed as well, together
with their child nodes and so on, recursively.

IMPORTANT: after deleting a node you should not call any of its method or access any of its properties, even the
read-only properties. It will cause non deterministic efects as the game runs, eventually leading to a segmentation fault
and a crash to desktop.

1.2.16 End of Part 2 - full code

We end this part of tutorial with a lot of code inside Scene’s __init__. It starts looking messy but don’t worry, we’ll
start the Part 3 with a cleanup, and then we’ll get to writing the actual game!

Anyway, here’s the full listing of main.py after Part 2:

from kaa.engine import Engine, Scene
from kaa.geometry import Vector
from kaa.sprites import Sprite, split_spritesheet
from kaa.nodes import Node
from kaa.geometry import Alignment
from kaa.transitions import NodeSpriteTransition
import os

class MyScene(Scene):

def __init__(self):
super().__init__()
self.arrow_sprite = Sprite(os.path.join('assets', 'gfx', 'arrow.png'))
self.arrow1 = Node(sprite=self.arrow_sprite, position=Vector(200, 200))

(continues on next page)

12 Chapter 1. Tutorial

kaaengine

(continued from previous page)

self.arrow2 = Node(sprite=self.arrow_sprite, position=Vector(400, 300))
self.arrow3 = Node(sprite=self.arrow_sprite, position=Vector(600, 500))
self.root.add_child(self.arrow1)
self.root.add_child(self.arrow2)
self.root.add_child(self.arrow3)
self.arrow1.position = Vector(360, 285)
self.arrow1.z_index = 1 # note: default z_index is 0
self.arrow1.rotation_degrees = 45
self.arrow1.scale = Vector(0.5, 1) # note: default is Vector(1,1)
create pixel marker sprite
self.pixel_marker_sprite = Sprite(os.path.join('assets', 'gfx', 'pixel-marker.

→˓png'))
create pixel_marker 1 in the same spot as arrow2 (but with bigger z-index

→˓so we can see it)
self.pixel_marker1 = Node(sprite=self.pixel_marker_sprite,

→˓position=Vector(400, 300), z_index=100)
create pixel_marker 2 in the same spot as arrow3
self.pixel_marker2 = Node(sprite=self.pixel_marker_sprite,

→˓position=Vector(600, 500), z_index=100)
add pixel markers to the scene
self.root.add_child(self.pixel_marker1)
self.root.add_child(self.pixel_marker2)
self.arrow3.origin_alignment = Alignment.right # default is Alignment.center
self.green_arrow_sprite = Sprite(os.path.join('assets', 'gfx', 'arrow-green.

→˓png'))
self.child_arrow1 = Node(sprite=self.green_arrow_sprite, position=Vector(0,0),

→˓ rotation_degrees=90, z_index=1)
self.arrow3.add_child(self.child_arrow1)
self.explosion_spritesheet = Sprite(os.path.join('assets', 'gfx', 'explosion.

→˓png')) # laod the whole spritesheet
self.explosion_frames = split_spritesheet(self.explosion_spritesheet, frame_

→˓dimensions=Vector(100,100),
frames_count=75) # create 75 separate <Sprite> objects

explosion_animation = NodeSpriteTransition(self.explosion_frames,
→˓duration=1000, loops=0) # create animation

self.explosion = Node(position=Vector(600, 150), transition=explosion_
→˓animation) # create node with animation

self.root.add_child(self.explosion) # add node to scene

explosion_animation_long = NodeSpriteTransition(self.explosion_frames,
→˓duration=4000, loops=3,

back_and_forth=True) #
→˓create animation

self.explosion2 = Node(position=Vector(100, 400), transition=explosion_
→˓animation_long)

self.explosion3 = Node(position=Vector(200, 500), transition=explosion_
→˓animation_long)

self.root.add_child(self.explosion2)
self.root.add_child(self.explosion3)
self.explosion3.lifetime = 5000

def update(self, dt):
.... previous code
self.arrow2.rotation_degrees += 1 # rotating 1 degree PER FRAME (not the

→˓best design)
self.arrow3.rotation_degrees += 90 * dt / 1000 # rotating 90 degrees PER

→˓SECOND (good design!) (continues on next page)

1.2. Part 2: Sprites and nodes 13

kaaengine

(continued from previous page)

with Engine(virtual_resolution=Vector(800, 600)) as engine:
set window properties
engine.window.size = Vector(800, 600)
engine.window.title = "My first kaa game!"
initialize and run the scene
my_scene = MyScene()
engine.run(my_scene)

1.3 Part 3: Organizing the game code

We’ve learned how to add objects to the nodes tree (draw them on the screen), how to transform them (move, rotate,
scale), add child nodes to other nodes and how to use animations. Let’s start writing the actual game!

The game will be a top-down shooter with 3 weapons: machine gun, grenade launcher and force gun (will shoot
non-lethal bullets which will push enemies away) and one type of enemy (a zombie). Enemies will have a basic AI
with two behavior patterns: walk towards the player or just walk towards randomly selected point. We will implement
some animations such as explosions and blood splatters. We’ll use kaa’s physics system to detect collisions between
bullets and enemies as well as between characters in the game (player and enemies). We’ll add some sound effects and
music for a better experience. We will also learn how to draw text and how to control a camera. Finally, we’ll learn
how to add more scenes, such as main screen or pause screen and how to switch between them.

It would not look good if we put all that stuff in main.py, so let’s create a better structure for the game files and folders
first. We’ll also clean up the code we wrote before.

1.3.1 Before we begin

From this point on we’re writing the actual game and the tutorial will have a lot of code in form of snippets.

Be aware that there will be two types of code examples:

A general example that explains a mechanism existing in the code. You don’t need to put that code anywhere.

def foo()
print('Hello world')

An actual code of the game we’re creating. Those code snippets will have a blue header bar telling you which file you
should put the code in. For example, this code should be put in folder/subfolder/foo.py

Listing 1: folder/subfolder/foo.py

def bar():
print('hello sailor!')

1.3.2 Structure of directories & files

Let’s start with creating the proper folders and files hierarchy structure for our game. Create the following python
packages and files structure.

14 Chapter 1. Tutorial

kaaengine

my_game/
assets/

... all assets folder content here...
common/

__init__.py
enums.py

controllers/
__init__.py
assets_controller.py
enemies_controller.py
explosions_controller.py
collisions_controller.py
player_controller.py

objects/
weapons/

__init__.py
base.py
force_gun.py
grenade_launcher.py
machine_gun.py

bullets/
__init__.py
force_gun_bullet.py
grenade_launcher_bullet.py
machine_gun_bullet.py

__init__.py
player.py
enemy.py
explosion.py

scenes/
__init__.py
gameplay.py
pause.py
title_screen.py

main.py
registry.py
settings.py

Controllers package will store classes to handle the game logic and manage objects.

Objects package will hold classes for different types of objects that will appear in the game. To keep it clean we’ll
have one .py file for one object type.

Scenes package will hold scenes. Yes, our game will eventually have many scenes, we will get there later in the
tutorial.

settings.py is a config file for our game

registry.py is a module to store global variables - we’ll be able to import them from anywhere in our code.

Note: The organization above is just a suggestion, not some rigid convention required by the kaa engine. You can
work out your own patterns for organizing the game files and folders, and use whatever works best for you. You don’t
need to follow naming conventions used in this tutorial. You can call controllers ‘managers’, or re-name the entry
module main.py to something else. Whatever works for you.

1.3. Part 3: Organizing the game code 15

kaaengine

1.3.3 Storing global variables and objects

Let’s start with settings.py:

Listing 2: settings.py

Let's use full HD as a base resolution for our game!
VIEWPORT_WIDTH = 1920
VIEWPORT_HEIGHT = 1080

Then registry.py:

Listing 3: registry.py

class Registry: # serious name, to look like a pro. In fact won't do anything - will
→˓just serve as a bag for objects :))

pass

global_controllers = Registry()
scenes = Registry()

1.3.4 Keep scenes in separate .py files

Let’s create a stub of a Gameplay scene in scenes/gameplay.py

Listing 4: scenes/gameplay.py

from kaa.engine import Scene

class GameplayScene(Scene):

def __init__(self):
super().__init__()

def update(self, dt):
pass

1.3.5 Keep the main.py clean

Finally, let’s now clean up the main.py. Generally, the main module should have as little lines as possible because we
want the entire game logic to be in controllers, objects and scenes classes.

Listing 5: main.py

from kaa.engine import Engine
from kaa.geometry import Vector
import settings
from scenes.gameplay import GameplayScene

with Engine(virtual_resolution=Vector(settings.VIEWPORT_WIDTH, settings.VIEWPORT_
→˓HEIGHT)) as engine:

set window to fullscreen mode
engine.window.fullscreen = True
initialize and run the scene

(continues on next page)

16 Chapter 1. Tutorial

kaaengine

(continued from previous page)

gameplay_scene = GameplayScene()
engine.run(gameplay_scene)

Our main.py looks very pro now! Run the game to make sure it works. You should see an empty, black screen. Press
Alt+F4 to close it.

1.3.6 Load assets just once, from one place, and make them visible from every-
where

Proper assets management is very important. In Part 2 of the tutorial we have created Sprite objects inside Scene’s
__init__. It might work OK in a small game, but in the long run it’s not a good idea because some scenes can be
destroyed and created again. If we load assets inside scene’s __init__ - we would re-load the same assets files from
disk each time scene is reset (e.g. when player starts a new game).

Scene’s __init__ should only create Nodes needed to initialize the scene. Sprites and other assets-related objects
are immutable, so should be created only once, when the game starts. That’s what our AssetsController class
is for. Let’s edit the assets_controller.py file:

Listing 6: controllers/assets_controller.py

import os
from kaa.sprites import Sprite, split_spritesheet
from kaa.geometry import Vector

class AssetsController:

def __init__(self):
Load images:
self.background_img = Sprite(os.path.join('assets', 'gfx', 'background.png'))
self.title_screen_background_img = Sprite(os.path.join('assets', 'gfx',

→˓'title-screen.png'))
self.player_img = Sprite(os.path.join('assets', 'gfx', 'player.png'))
self.machine_gun_img = Sprite(os.path.join('assets', 'gfx', 'machine-gun.png

→˓'))
self.force_gun_img = Sprite(os.path.join('assets', 'gfx', 'force-gun.png'))
self.grenade_launcher_img = Sprite(os.path.join('assets', 'gfx', 'grenade-

→˓launcher.png'))
self.machine_gun_bullet_img = Sprite(os.path.join('assets', 'gfx', 'machine-

→˓gun-bullet.png'))
self.force_gun_bullet_img = Sprite(os.path.join('assets', 'gfx', 'force-gun-

→˓bullet.png'))
self.grenade_launcher_bullet_img = Sprite(os.path.join('assets', 'gfx',

→˓'grenade-launcher-bullet.png'))
self.enemy_stagger_img = Sprite(os.path.join('assets', 'gfx', 'enemy-stagger.

→˓png'))
few variants of bloodstains, put them in the same list so we can pick them

→˓randomly later
self.bloodstain_imgs = [Sprite(os.path.join('assets', 'gfx', f'bloodstain{i}.

→˓png')) for i in range(1, 5)]

Load spritesheets
self.enemy_spritesheet = Sprite(os.path.join('assets', 'gfx', 'enemy.png'))
self.blood_splatter_spritesheet = Sprite(os.path.join('assets', 'gfx', 'blood-

→˓splatter.png'))
self.explosion_spritesheet = Sprite(os.path.join('assets', 'gfx', 'explosion.

→˓png')) (continues on next page)

1.3. Part 3: Organizing the game code 17

kaaengine

(continued from previous page)

enemy-death.png has a few death animations, so make this a list
self.enemy_death_spritesheet = Sprite(os.path.join('assets','gfx','enemy-

→˓death.png'))

use the spritesheets to create framesets
self.enemy_frames = split_spritesheet(self.enemy_spritesheet, frame_

→˓dimensions=Vector(33, 74))
self.blood_splatter_frames = split_spritesheet(self.blood_splatter_

→˓spritesheet, frame_dimensions=Vector(50, 50))
self.explosion_frames = split_spritesheet(self.explosion_spritesheet, frame_

→˓dimensions=Vector(100, 100), frames_count=75)

self.enemy_death_frames = [
split_spritesheet(self.enemy_death_spritesheet.crop(Vector(0, i*74),

→˓Vector(103*9, 74)),
frame_dimensions=Vector(103, 74)) for i in range(0, 5)

]

The code is using features we’ve learned in previous chapter: creating a new Sprite, using crop method and using
split_spritesheet to prepare individual animation frames which we’ll use later.

Feel free to review the contents of the assets/gfx folder to verify we’re loading the files correctly.

As stated above, we want the assets controller to initialize just once and then be globally visible. Let’s modify the
main.py in a following way:

Listing 7: main.py

import registry
from controllers.assets_controller import AssetsController

with Engine(virtual_resolution=Vector(settings.VIEWPORT_WIDTH, settings.VIEWPORT_
→˓HEIGHT)) as engine:

initialize global controllers and keep them in the registry
registry.global_controllers.assets_controller = AssetsController()
..... rest of the code

1.3.7 It’s good to keep scenes in a global registry too

It’s practical to store scene instances in the global registry as well. That will make them accessible from anywhere in
the code. Let’s modify that part of main.py where GameplayScene is created:

18 Chapter 1. Tutorial

kaaengine

Listing 8: main.py

with Engine(virtual_resolution=Vector(settings.VIEWPORT_WIDTH, settings.VIEWPORT_
→˓HEIGHT)) as engine:

..... previous code
initialize scenes and keep them in the registry
registry.scenes.gameplay_scene = GameplayScene()
engine.run(registry.scenes.gameplay_scene)

1.3.8 Write classes for your in-game objects and inherit from kaa.Node

It would look much better if we could add a <Player> object to a scene, not just some generic <Node>, right? Let’s
do this.

Let’s write a Player class that extends kaa Node. <Player> instance will represent a character controlled by the
player.

Listing 9: objects/player.py

from kaa.nodes import Node
import registry

class Player(Node):

def __init__(self, position, hp=100):
node's properties
super().__init__(z_index=10, sprite=registry.global_controllers.assets_

→˓controller.player_img, position=position)
custom properties
self.hp = hp
self.current_weapon = None

By extending Node we can introduce our custom properties, such as player’s hit points. Also, notice how we imported
and used our registry.py to access the sprite stored in the assets controller.

Let’s create classes for weapons the same way. They won’t have any custom properties for now. We’ll have a base
class, called WeaponBase extending Node, and all our wepons will then extend the WeaponBase.

Listing 10: objects/weapons/base.py

from kaa.nodes import Node

class WeaponBase(Node):

def __init__(self, *args, **kwargs):
super().__init__(z_index=20, *args, **kwargs)

Listing 11: objects/weapons/machine_gun.py

import registry
from objects.weapons.base import WeaponBase

(continues on next page)

1.3. Part 3: Organizing the game code 19

kaaengine

(continued from previous page)

class MachineGun(WeaponBase):

def __init__(self):
node's properties
super().__init__(sprite=registry.global_controllers.assets_controller.machine_

→˓gun_img)

Listing 12: objects/weapons/force_gun.py

import registry
from objects.weapons.base import WeaponBase

class ForceGun(WeaponBase):

def __init__(self):
node's properties
super().__init__(sprite=registry.global_controllers.assets_controller.force_

→˓gun_img)

Listing 13: objects/weapons/grenade_launcher.py

import registry
from objects.weapons.base import WeaponBase

class GrenadeLauncher(WeaponBase):

def __init__(self):
node's properties
super().__init__(sprite=registry.global_controllers.assets_controller.grenade_

→˓launcher_img)

1.3.9 Implement object-related logic inside object classes

We need Player to hold a weapon. Let’s implement a change_weapon method in the Player class. This method
will be responsible for putting weapon into player’s hands :) or speaking more technically: it will replace weapon’s
Node (which will be Player’s child node) with a new one and remember currently selected weapon.

To hide the internals, we want the caller to only pass a simple enumerated value indicating new weapon, like so:

player.change_weapon(WeaponType.GrenadeLauncher)

Let’s create weapon types enum first:

Listing 14: common/enums.py

import enum

class WeaponType(enum.Enum):
MachineGun = 1
GrenadeLauncher = 2
ForceGun = 3

20 Chapter 1. Tutorial

kaaengine

And then add the change_weapon method in the Player class:

Listing 15: objects/player.py

from kaa.geometry import Vector
from common.enums import WeaponType
from objects.weapons.force_gun import ForceGun
from objects.weapons.grenade_launcher import GrenadeLauncher
from objects.weapons.machine_gun import MachineGun

class Player(Node):

def change_weapon(self, new_weapon):
if self.current_weapon is not None:

self.current_weapon.delete() # delete the weapon's node from the scene
if new_weapon == WeaponType.MachineGun:

weapon = MachineGun() # position relative to the Player
elif new_weapon == WeaponType.GrenadeLauncher:

weapon = GrenadeLauncher()
elif new_weapon == WeaponType.ForceGun:

weapon = ForceGun()
else:

raise Exception('Unknown weapon type: {}'.format(new_weapon))
self.add_child(weapon) # add the weapon node as player's child node (to make

→˓the weapon move and rotate together with the player)
self.current_weapon = weapon # remember the current weapon

Let’s make the player start with machine gun. Add this line at the end of Player’s __init__:

Listing 16: objects/player.py

self.change_weapon(WeaponType.MachineGun)

1.3.10 Implement higher-tier logic in controller classes

Let’s now write a controller class to manage the Player. Generally we want the controller classes to be used for
higher-tier logic such as interactions between in-game objects and other classes (controllers or other in-game objects),
managing collections, handling input, and so on. . .

Another important thing we want controllers to do is to add initial objects to the scene. Let’s start with exactly that:

Listing 17: controllers/player_controller.py

import settings
from objects.player import Player
from kaa.geometry import Vector

class PlayerController:

def __init__(self, scene):
self.scene = scene
self.player = Player(position=Vector(settings.VIEWPORT_WIDTH/2, settings.

→˓VIEWPORT_HEIGHT/2))
self.scene.root.add_child(self.player)

Note: As your code base will grow and you’ll add more objects and controllers you will sometimes face a dillema

1.3. Part 3: Organizing the game code 21

kaaengine

where to put your code: in the object class, in the controller class or maybe even directly in the scene class? We can’t
give you precise answers here, just use common sense and general good programming practices for keeping your code
clean.

Let’s add the player controller to the scene:

Listing 18: scenes/gameplay.py

from controllers.player_controller import PlayerController

class GameplayScene(Scene):

def __init__(self):
super().__init__()
self.player_controller = PlayerController(self)

Finally, let’s run the game! We should see the player in the middle of the screen, holding the machine gun.

Lastly, let’s add some nicer background (black background is not fun).

Listing 19: scenes/gameplay.py

import registry
import settings
from kaa.nodes import Node
from kaa.geometry import Vector
... other imports...

class GameplayScene(Scene):

def __init__(self):
super().__init__()
self.root.add_child(Node(sprite=registry.global_controllers.assets_controller.

→˓background_img,
position=Vector(settings.VIEWPORT_WIDTH/2, settings.

→˓VIEWPORT_HEIGHT/2),
z_index=0))

.... rest of the function

Run the game and enjoy the sights.

Let’s move on to the Part 4 of the tutorial where we’ll learn how to handle input from mouse and keyboard.

1.4 Part 4: Handling Input

We have our hero drawn on the screen, holding a machine gun. In this chapter we will implement the following
input-related stuff:

• move our hero around with WSAD keys,

• cycle weapons by pressing tab key

• switch to selected weapon by pressing 1,2 and 3

• look around by moving the mouse

• shoot by pressing left mouse button.

22 Chapter 1. Tutorial

kaaengine

The best place to handle input is update(dt) function. But we don’t want to put everything in the scene’s
update(dt) as the code would grow too large. Let’s add an update(dt) function to PlayerController
class:

Listing 20: controllers/player_controller.py

class PlayerController:

.... rest of the class

def update(self, dt):
pass

Then let’s call that method from the GameplayScene:

Listing 21: scenes/gameplay.py

class GameplayScene(Scene):

...... rest of the class

def update(self, dt):
self.player_controller.update(dt)

#....... rest of the method

1.4.1 Three ways for handling input

Kaa offers three ways for handling input.

• You can actively check given key/button status (pressed, released etc.). You do that by calling appropriate
methods:

– Scene’s input.keyboard methods for keyboard (e.g. input.keyboard.
is_pressed(KeyCode.esc))

– Scene’s input.mouse methods for mouse (e.g. input.keyboard.
is_pressed(MouseButton.left))

– Scene’s input.controller methods for controllers (e.g. input.controller.
is_pressed(ControllerButton.a))

– Scene’s input.system methods for system (e.g. system.get_clipboard_text())

• You can iterate through events returned by the Scene’s input.events() method to check for input events
(keystrokes, mouse clicks, controller sticks moved, etc.).

• You can subscribe to specific type of events using Scene’s input.register_callback() method.

We’re going to use the first two methods in the tutorial.

1.4.2 Handling input from keyboard

The function which you can call at any time and get an answer if a keyboard key is up or down is input.keyboard.
is_pressed(). Let’s use it in our player_controller.py:

1.4. Part 4: Handling Input 23

kaaengine

Listing 22: controllers/player_controller.py

from kaa.input import Keycode

class PlayerController:

.... rest of the class

def update(self, dt):
if self.scene.input.keyboard.is_pressed(Keycode.w):

self.player.position += Vector(0, -3)
if self.scene.input.keyboard.is_pressed(Keycode.s):

self.player.position += Vector(0, 3)
if self.scene.input.keyboard.is_pressed(Keycode.a):

self.player.position += Vector(-3, 0)
if self.scene.input.keyboard.is_pressed(Keycode.d):

self.player.position += Vector(3, 0)

Run the game and see how our hero can now move using WSAD keys!

Note: To check if a key is in “released” state use scene.input.keyboard.is_released()

But hey, wasn’t something like this an example of a bad practice? We just hardcoded hero’s speed to 3 pixels (actually:
3 units of virtual resolution) per frame, ignoring the dt value! It means if the dt is 15 miliseconds the hero will move
the same distance as when the frame takes 10 times longer (dt is 150 miliseconds). Also, shouldn’t hero speed value
be defined in settings.py and imported from there rather just put directly in the code like some “magic number”?

Yup, those are all valid points. Don’t worry - we’ll refactor that code later, when we start working with the physics.

Let’s now implement a function to cycle through weapons. Add the following code to the Player class:

Listing 23: controllers/player.py

class Player(Node):

.... rest of the class

def cycle_weapons(self):
if self.current_weapon is None:

return
elif isinstance(self.current_weapon, MachineGun):

self.change_weapon(WeaponType.GrenadeLauncher)
elif isinstance(self.current_weapon, GrenadeLauncher):

self.change_weapon(WeaponType.ForceGun)
elif isinstance(self.current_weapon, ForceGun):

self.change_weapon(WeaponType.MachineGun)

Pretty self explanatory. Now let’s try calling this function when tab key is pressed. Append the following code to the
update() function in PlayerController:

Listing 24: controllers/player_controller.py

class PlayerController:

.... rest of the class

(continues on next page)

24 Chapter 1. Tutorial

kaaengine

(continued from previous page)

def update(self, dt):
....... rest of the function
if self.scene.input.keyboard.is_pressed(Keycode.tab):

self.player.cycle_weapons()

Run the game and press tab. . . . whoa!!! It makes our hero change weapons so fast! This is because the update()
function is called by the engine as frequently as 60 times per second, so our cycle_weapons() function is called
60 times per second (as long as the tab key is pressed).

Let’s fix this! There is another method of handling input from keyboard, it captures individual key strokes.

1.4.3 Handling events from keyboard

Let’s remove the if self.scene.input.keyboard.is_pressed(Keycode.tab): part from the update
function inside PlayerController and put the following code instead:

Listing 25: controllers/player_controller.py

from common.enums import WeaponType

class PlayerController:

..... rest of the class

def update(self, dt):

....... rest of the method

for event in self.scene.input.events(): # iterate over all events which
→˓occurred during this frame

if event.keyboard_key: # check if the event is a keyboard key related
→˓event

if event.keyboard_key.is_key_down: # check if the event is "key down
→˓event"

check which key was pressed down:
if event.keyboard_key.key == Keycode.tab:

self.player.cycle_weapons()
elif event.keyboard_key.key == Keycode.num_1:

self.player.change_weapon(WeaponType.MachineGun)
elif event.keyboard_key.key == Keycode.num_2:

self.player.change_weapon(WeaponType.GrenadeLauncher)
elif event.keyboard_key.key == Keycode.num_3:

self.player.change_weapon(WeaponType.ForceGun)

Run the game. Works much better now, right?

Let’s take a look at the code. What happens here is we iterate on all events which occurred during current frame.
Each Event object has identical structure - it holds properties such as keyboard_key, mouse_button and about
a dozen others. Of those properties only one will be non null - that indicates what type of event this is. For exam-
ple, if the keyboard_key property is not None it means this event is a keyboard key related event. Accessing
keyboard_key property gives access to new properties, specific for this type of event. Refer to input.Event
documentation for more details.

In our case the keyboard_key.is_key_down event is published on a first key stroke. That allows us to react to
individual key stroke events more naturally, unlike checking for a “key pressed” status 60 times a second.

1.4. Part 4: Handling Input 25

kaaengine

Note: You can use event.keyboard_key.is_key_up to detect when a key was released.

We now have ability to move our hero, cycle through weapons with tab, and select weapon with 1, 2 and 3.

One more thing before we move on, it’s annoying to press ALT+F4 to close the window, let’s just bind it with pressing
‘q’. Let’s update the update() (no pun intended) in the Scene.

Listing 26: scenes/gameplay.py

from kaa.input import Keycode

class GameplayScene(Scene):

....... rest of the class

def update(self, dt):
self.player_controller.update(dt)

for event in self.input.events():
if event.keyboard_key: # check if the event is a keyboard key related

→˓event
if event.keyboard_key.is_key_down: # check if the event is "key down

→˓event"
check which key was pressed down:
if event.keyboard_key.key == Keycode.q:

self.engine.quit()

1.4.4 Getting mouse position

Getting mouse position is very easy. All we need is to call input.mouse.get_position() on our scene in-
stance.

Let’s get current mouse position and use it to rotate the player towards the mouse pointer.

Listing 27: controllers/player_controller.py

class PlayerController:

..... rest of the class

def update(self, dt):

....... rest of the method

mouse_pos = self.scene.input.mouse.get_position()
player_rotation_vector = mouse_pos - self.player.position
self.player.rotation_degrees = player_rotation_vector.to_angle_degrees()

Let’s look at the code: to get a direction vector between positions A and B we need to substract those two vectors.
We then use to_angle_degrees() on a vector to get a number between 0 and 360 representing vector’s angle.
Finally we set player’s rotation (in degrees) to the calculated value.

Run the game. We can now walk with WSAD, change weapons with tab, 1, 2, and 3 keys, and we can aim! It starts
looking good! Let’s now add a shooting mechanics!

26 Chapter 1. Tutorial

kaaengine

1.4.5 Getting mouse button click events

Handling mouse click events, is very similar to handling keyboard events. We can actively check if mouse button is
pressed/released or we can check for mouse button events present in the Scene’s input.events() list.

Look at the example below but don’t add it to the game’s code yet. We’ll do that in the next chapter.

from kaa.input import MouseButton

active check if mouse key is pressed:
if scene.input.mouse.is_pressed(MouseButton.left):

..... do stuff

for event in self.scene.input.events():
check if it's a mouse button - related event and if it's about mouse button

→˓being pressed:
if event.mouse_button and event.mouse_button.is_button_down:

check which button the event is about:
if event.mouse_button.button == MouseButton.right:

..... do stuff

We will use the left mouse button click in the next part of the tutorial, where we’ll implement shooting and collision
handling.

1.5 Part 5: Physics

In this chapter we will implement physics in the game. We will add enemies and also implement shooting at them
with 3 weapons:

• Machine gun - will shoot regular bullets, which will deal damage to enemies they hit.

• Grenade launcher - grenades will explode on collision (triggering already known explosion animation) and deal
damage to enemies in certain radius and apply force pushing enemies away

• Force gun - will shoot a large bullets which won’t do any damage, just freely interact with enemies and with
each other

1.5.1 Understanding SpaceNode, BodyNode and HitboxNode

We need to learn about 3 new types of nodes which we need to simulate the physics in the game:

• SpaceNode - it represents physical simulation environment. Typically, a scene will need just one SpaceNode,
but you can have more if needed. SpaceNode has the following properties:

– gravity - a Vector. A force affecting all BodyNodes added to that SpaceNode. Default is zero vector
(no gravity).

– damping - a float between 0 and 1, representing friction forces in the simulation space. The smaller it is,
the faster a freely moving objects will slow down. Default is 1 (no damping)

• BodyNode - represents a physical body. It has the same properties as Node (in fact it inherits from the Node
class) but adds a few new ones, such as:

– body_type - enum value, determining the type of the body node, check out types of body nodes

– mass - a float, heavier objects will hit harder :)

1.5. Part 5: Physics 27

kaaengine

– velocity - a Vector. Vector’s rotation is objects’ movement direction and vector’s length is how fast the
object is moving. Default is zero vector (no velocity).

– angular_velocity - a float. How fast the object is rotating around its center. Positive and negative
values represent clockwise and anti-clockwise rotation speed respectively. Default is zero.

– force - a Vector, representing a force working on the object. The force vector is reset to zero on each
frame. Non-zero force applied each frame will cause the object to accelerate. Default is zero vector (no
force).

– and few others (out of scope of the tutorial, check out the API reference on physics.BodyNode for
more info)

• HitboxNode - represents an area of a BodyNode which can collide with other HitboxNodes. A BodyNode can
have multiple HitboxNodes. A BodyNode without HitboxNodes has all physical properties calculated normally
but won’t collide with anything! HitboxNode properties include:

– shape - defines a shape of the hitbox, must be an instance of kaa.geometry.Circle or kaa.
geometry.Polygon

– mask - user-defined enum.IntFlag, indicating “what type of object I am”

– collision_mask - user-defined enum.IntFlag, indicating “what type(s) of objects I can collide with”

– trigger_id - a user-defined ID used for collision handler function

When working with regular Nodes, we could build any tree-like structures we wanted, with multiple levels of nested
Nodes. When working with physical Nodes some restrictions apply:

• BodyNode must be a child of a SpaceNode. It cannot be a child of other node type.

• BodyNode cannot have other BodyNodes as children. It can have regular Nodes as children though.

• HitboxNode must be a child of BodyNode. It cannot be a child of any other node type. BodyNode can have any
number of HitboxNodes (including zero).

• HitboxNode cannot have another HitboxNode as a child, it can have regular Node children though.

Note: Space node doesn’t have to be a child of a root node, in fact it can be anywhere in the node tree but for clarity
it’s recommended to have it as a direct child of the root node.

Note: Physics engine available in kaa is a wrapper for an excellent 2D physics engine written in C++ named Chip-
munk. Kaa surfaces a lot of Chipmunk methods and properties, but not all yet. New features are coming soon!

1.5.2 Why a BodyNode cannot have other BodyNodes as children ?

As you’ll work on more complex games you’ll notice that the most significant restriction is that BodyNode cannot have
other BodyNodes as children. It means we cannot have a tree-like structure of colliding objects, the list of physical
objects in the scene must be a flat list!. It may seem like a serious constraint, but there are good reasons for it. The
purpose of physics engine is to calculate object’s position, rotation, velocity etc. based on environment properties
(gravity, damping) and interactions (e.g. collisions) with other dynamic objects. A node whose transformations
(position, rotation) would be calculated in relation to its parent, regardless of the physical environment (like it is with
regular Nodes) simply stops being a physical node and becomes just a picture drawn on the screen.

Having said that, there are ways in which you can simulate a more complex or hierarchical structure of physical objects

• Apply all BodyNode transformations manually. In other words do the calculations on your own and set the
object’s position and/or rotation manually.

28 Chapter 1. Tutorial

https://chipmunk-physics.net/
https://chipmunk-physics.net/

kaaengine

• Spatial queries - it allows to programatically ask a question like “here’s a polygon (circle, segment), tell me
which HitboxNodes/BodyNodes it collides with”

• Joints - this feature is to be implemented next. You will be able to connect BodyNodes with ‘joints’ and they
will work together.

1.5.3 Types of BodyNodes

A BodyNode can be one of three types. This is determined by setting body_type property on a BodyNode.

• static (kaa.physics.BodyNodeType.static) - this node cannot change position or rotation. Basically
a performance hint for the engine. Useful for non-moving platforms, walls etc.

• kinematic (kaa.physics.BodyNodeType.kinematic) - the node can move but does not have a mass
(you can set the mass but it won’t change its behavior) therefore no environmental effects (such as damping or
gravity) can affect it. When colliding with other objects it will behave as a static object. Using kinemtaic bodies
is useful when you’re interested just in detecting a collision and handle all consequences on your own.

• dynamic (kaa.physics.BodyNodeType.dynamic) - fully dynamic node. Useful for a ‘free’ objects
which you add to the environment and let the engine work out all the physics.

1.5.4 Implement the first BodyNode with a hitbox

Let’s start using physics in our game. First let’s define enum flags which we’ll use to control what collides with what.

Listing 28: common/enums.py

class HitboxMask(enum.IntFlag):
player = enum.auto()
enemy = enum.auto()
bullet = enum.auto()
all = player | enemy | bullet

Next let’s add a SpaceNode to the Scene - it will be a container for all BodyNodes.

Listing 29: scenes/gameplay.py

from kaa.physics import SpaceNode

class GameplayScene(Scene):

def __init__(self):
super().__init__()
self.space = SpaceNode()
self.root.add_child(self.space)
self.player_controller = PlayerController(self)

....... rest of the class

We also need to change the line in the PlayerController which adds Player to the scene. We shall now add
the player to the space node.

1.5. Part 5: Physics 29

kaaengine

Listing 30: controllers/player_controller.py

inside __init__ :
self.scene.space.add_child(self.player)

Let’s add few variables to settings.py. We’ll need it later, just trust me and add that stuff for now :)

Listing 31: settings.py

COLLISION_TRIGGER_PLAYER = 1
COLLISION_TRIGGER_ENEMY = 2
COLLISION_TRIGGER_MG_BULLET = 3
COLLISION_TRIGGER_GRENADE_LAUNCHER_BULLET = 4
COLLISION_TRIGGER_FORCE_GUN_BULLET = 5

PLAYER_SPEED = 150
FORCE_GUN_BULLET_SPEED = 300
MACHINE_GUN_BULLET_SPEED = 1200
GRENADE_LAUNCHER_BULLET_SPEED = 200

Finally, let’s make the Player object to inherit from a BodyNode, making it a physical object. Let’s give it a mass
of 1. Let’s also add a hitbox node to the player!

Listing 32: objects/player.py

import settings
from kaa.physics import BodyNode, BodyNodeType, HitboxNode
from kaa.geometry import Vector, Polygon
from common.enums import WeaponType, HitboxMask

class Player(BodyNode): # changed from kaa.Node

def __init__(self, position, hp=100):
super().__init__(body_type=BodyNodeType.dynamic, mass=1,

z_index=10, sprite=registry.global_controllers.assets_
→˓controller.player_img, position=position)

create a hitbox and add it as a child node to the Player
self.add_child(HitboxNode(

shape=Polygon([Vector(-10, -25), Vector(10, -25), Vector(10, 25), Vector(-
→˓10, 25), Vector(-10, -25)]),

mask=HitboxMask.player,
collision_mask=HitboxMask.enemy,
trigger_id=settings.COLLISION_TRIGGER_PLAYER

))
.......... rest of the function

As we can see, we’ve added a rectangular hitbox, with mask ‘player’ and told the engine it should collide with hitboxes
whose mask is ‘enemy’ - we will add those soon. We have also set a trigger_id for a hitbox (basically, a custom integer
number) - the meaning of this ID will also become clear soon.

A few important remarks about Polygons of hitboxes:

• they must be convex

• Polygon’s coordinates are relative to the node origin

• they don’t need to be closed - the first and the last point don’t have to be the same. Kaa will close them
automatically.

30 Chapter 1. Tutorial

https://www.google.pl/search?q=convex+shape&tbm=isch&source=univ&sa=X&ved=2ahUKEwjr9pnJ5M7lAhW9AhAIHeVXCRMQsAR6BAgJEAE&biw=1920&bih=967

kaaengine

Run the game and make sure everything works. The gameplay did not change at all, but our hero is now a physical
object!

Remember the naive implementation of player movement (setting player’s position on WSAD keys pressed)? From
physic’s engine standpoint manual change of objects position makes no sense. Let’s set player’s velocity instead,
and let the physics engine calculate the position.

Listing 33: controllers/player_controller.py

def update(dt):
self.player.velocity=Vector(0,0) # reset velocity to zero, if no keys are pressed

→˓the player will stop

if self.scene.input.keyboard.is_pressed(Keycode.w):
self.player.velocity += Vector(0, -settings.PLAYER_SPEED)

if self.scene.input.keyboard.is_pressed(Keycode.s):
self.player.velocity += Vector(0, settings.PLAYER_SPEED)

if self.scene.input.keyboard.is_pressed(Keycode.a):
self.player.velocity += Vector(-settings.PLAYER_SPEED, 0)

if self.scene.input.keyboard.is_pressed(Keycode.d):
self.player.velocity += Vector(settings.PLAYER_SPEED, 0)

...... rest of the function

Run the game and make sure it works. Player’s position will now be calculated by the physics engine, and we don’t
need to worry about frame duration - it’s all handled automatically by the physics engine.

1.5.5 Drawing hitboxes on the screen

Hitbox nodes are invisible by default, but sometimes it’s good to see them (e.g. to check if they’re positioned correctly).
We can do that by setting color property. Using z_index is also advisable to make the hitbox node be drawn on
top of its BodyNode.

from kaa.colors import Color

to make hitbox node visible just set its color and a high enough z_index
hitbox_node.color = Color(1, 0, 1, 0.3)
hitbox_node.z_index = 1000

Feel free to experiment with setting player’s hitbox color, then move on to the next section.

1.5.6 Adding more BodyNodes

We have the player with a gun in hand but where are the enemies? Let’s add some. First, let’s write an Enemy class.
Just like the player, the enemy must be a BodyNode because we want it to be a physical object with a hitbox node
attached.

Listing 34: objects/enemy.py

from kaa.physics import BodyNodeType, BodyNode, HitboxNode
from kaa.geometry import Vector, Polygon
from common.enums import HitboxMask
import registry
import settings
from kaa.transitions import NodeSpriteTransition
import random

(continues on next page)

1.5. Part 5: Physics 31

kaaengine

(continued from previous page)

class Enemy(BodyNode):

def __init__(self, position, hp=100, *args, **kwargs):
node's properties
super().__init__(body_type=BodyNodeType.dynamic, mass=1,

z_index=10, position=position,
transition=NodeSpriteTransition(registry.global_controllers.

→˓assets_controller.enemy_frames,
duration=max(200, random.

→˓gauss(400,100)), loops=0),

*args, **kwargs)
create a hitbox and add it as a child node to the Enemy
self.add_child(HitboxNode(

shape=Polygon([Vector(-8, -19), Vector(8, -19), Vector(8, 19), Vector(-8,
→˓19), Vector(-8, -19)]),

mask=HitboxMask.enemy,
collision_mask=HitboxMask.all,
trigger_id=settings.COLLISION_TRIGGER_ENEMY,

))
custom properties
self.hp = hp

We’re using the already known features: creating an animation loop (using NodeSpriteTransition), and adding
a hitbox as a child node.

Next, let’s write EnemiesController class which will have methods such as add_enemy and remove_enemy.
It will also have an update() function where we will implement enemies AI. We shall add some initial enemies to
the scene in the __init__.

Listing 35: controllers/enemies_controller.py

import random
from objects.enemy import Enemy
from kaa.geometry import Vector

class EnemiesController:

def __init__(self, scene):
self.scene = scene
self.enemies = []
add some initial enemies
self.add_enemy(Enemy(position=Vector(200, 200), rotation_degrees=random.

→˓randint(0, 360)))
self.add_enemy(Enemy(position=Vector(1500, 600), rotation_degrees=random.

→˓randint(0, 360)))
self.add_enemy(Enemy(position=Vector(1000, 400), rotation_degrees=random.

→˓randint(0, 360)))
self.add_enemy(Enemy(position=Vector(1075, 420), rotation_degrees=random.

→˓randint(0, 360)))
self.add_enemy(Enemy(position=Vector(1150, 440), rotation_degrees=random.

→˓randint(0, 360)))

def add_enemy(self, enemy):
self.enemies.append(enemy) # add to the internal list
self.scene.space.add_child(enemy) # add to the scene

(continues on next page)

32 Chapter 1. Tutorial

kaaengine

(continued from previous page)

def remove_enemy(self, enemy):
self.enemies.remove(enemy) # remove from the internal list
enemy.delete() # remove from the scene

def update(self, dt):
pass

Let’s put the controller in the scene and hook up the update():

Listing 36: scenes/gameplay.py

from controllers.enemies_controller import EnemiesController

class GameplayScene(Scene):

def __init__(self):
... rest of the function
self.enemies_controller = EnemiesController(self)

def update(self, dt):
self.player_controller.update(dt)
self.enemies_controller.update(dt)
... rest of the function

Run the game. We have the enemies on the scene! They’re animated but not moving yet. They’re regular physical
objects, as you run into them they’ll collide with you and with each other. Since we’re not applying any forces to
enemies yet it looks as if they were on an ice rink :)

Let’s add a feature of spawning enemies by pressing SPACE. The enemy shall be spawned at current mouse pointer
position.

Listing 37: controllers/player_controller.py

import random
from objects.enemy import Enemy

class PlayerController:

def update(self, dt):
.... rest of the function
for event in self.scene.input.events():

if event.keyboard_key:
... other keyboard events
elif event.keyboard_key.key == Keycode.space:

self.scene.enemies_controller.add_enemy(Enemy(position=self.scene.
→˓input.mouse.get_position(),

rotation_degrees=random.randint(0,360)))

Run the game and see how you can spawn them by pressing space bar! Cool isn’t it?

You can take a moment to make some experiments, for instance:

• try setting damping on the SpaceNode (in scenes/gameplay.py) to a very low value e.g. 0.01 and see how
it works! Values greater than 1 will result in a funny effect of objects accelerating just by moving in the
environment.

• try giving enemies different masses (e.g. randomly) and observe how it affects them as they collide with each
other.

1.5. Part 5: Physics 33

kaaengine

We now know everything to implement shooting the Force Gun - it will basically shoot a dynamic BodyNode objects
which will collide with enemies, player and with each other. We’re going to give those nodes a lifetime of 10 seconds.

Let’s implement the bullet object first. It’s going to be really simple: a BodyNode with a random mass, a circular
hitbox and a lifetime of 10 seconds.

Listing 38: objects/bullets/force_gun_bullet.py

import random
from kaa.physics import BodyNode, BodyNodeType, HitboxNode
from kaa.geometry import Circle
import registry
import settings
from common.enums import HitboxMask

class ForceGunBullet(BodyNode):

def __init__(self, *args, **kwargs):
super().__init__(sprite=registry.global_controllers.assets_controller.force_

→˓gun_bullet_img,
z_index=30,
body_type=BodyNodeType.dynamic,
mass=random.uniform(0.5, 8), # a random mass,
lifetime=10000, # will be removed from the scene

→˓automatically after 10 secs

*args, **kwargs)
self.add_child(HitboxNode(shape=Circle(radius=10),

mask=HitboxMask.bullet,
collision_mask=HitboxMask.all,
trigger_id=settings.COLLISION_TRIGGER_FORCE_GUN_

→˓BULLET))

Next, let’s add methods for shooting in the WeaponBase class and in the ForceGun class:

Listing 39: objects/weapons/base.py

from kaa.nodes import Node
from kaa.geometry import Vector

class WeaponBase(Node):

def __init__(self, *args, **kwargs):
super().__init__(z_index=20, *args, **kwargs)
self.cooldown_time_remaining = 0

def shoot_bullet(self):
raise NotImplementedError # must be implemented in the derived class

def get_cooldown_time(self):
raise NotImplementedError # must be implemented in the derived class

def get_initial_bullet_position(self):
player_pos = self.parent.position
player_rotation = self.parent.rotation_degrees
weapon_length = 50 # the bullet won't originate in the center of the player

→˓position but 50 pixels from it

(continues on next page)

34 Chapter 1. Tutorial

kaaengine

(continued from previous page)

result = player_pos + Vector.from_angle_degrees(player_rotation).
→˓normalize()*weapon_length

return result

Listing 40: objects/weapons/force_gun.py

import registry
import settings
from objects.bullets.force_gun_bullet import ForceGunBullet
from objects.weapons.base import WeaponBase
from kaa.geometry import Vector

class ForceGun(WeaponBase):

def __init__(self):
node's properties
super().__init__(sprite=registry.global_controllers.assets_controller.force_

→˓gun_img)

def shoot_bullet(self):
bullet_position = self.get_initial_bullet_position()
bullet_velocity = Vector.from_angle_degrees(self.parent.rotation_degrees) *

→˓settings.FORCE_GUN_BULLET_SPEED
self.scene.space.add_child(ForceGunBullet(position=bullet_position,

→˓velocity=bullet_velocity))
reset cooldown time
self.cooldown_time_remaining = self.get_cooldown_time()

def get_cooldown_time(self):
return 0.250

The maths in the shoot_bullet and get_initial_bullet_position is fairly simple, but let’s highlight
a few things here. get_initial_bullet_position basically returns a player’s position offset by 50 pixels
towards the direction where the player is rotated (where he points his gun). This way the bullet will spawn at the end
of the weapon’s barrel. Spawning it in the center of the player would not look good! We’re using Vector’s method
from_angle_degrees to create a normal (length of 1) vector rotated in the direction of the player, multiply by 50
and add player position. shoot_bullet is even easier, it just adds a bullet velocity, again, creating vector rotated at
direction where player is pointing his gun and then multiplying by bullet speed. Finally we set the cooldown time to
weapon’s value.

The last thing is to wire it all up in the PlayerController inside the update() function:

Listing 41: controllers/player_controller.py

from kaa.input import Keycode, MouseButton

class PlayerController:
.... rest of the class

def update(self, dt):
.... rest of the function

Handle weapon logic
if self.player.current_weapon is not None:

decrease weapons cooldown time by dt
self.player.current_weapon.cooldown_time_remaining -= dt

(continues on next page)

1.5. Part 5: Physics 35

kaaengine

(continued from previous page)

if left mouse button pressed and weapon is ready to shoot, then, well,
→˓shoot a bullet!

if self.scene.input.mouse.is_pressed(MouseButton.left) and self.player.
→˓current_weapon.cooldown_time_remaining<0:

self.player.current_weapon.shoot_bullet()

Run the game! You can now shoot them with the force gun! How cool is it?

Did you get NotImplementedError? It’s because other weapons are not implemented, just look at the code!
Change to ForceGun by pressing 3 and then try shooting. Better? Much better!

The game slowly starts looking like a playable thing. We can move around, spawn enemies and shoot our Force Gun
at them.

Let’s now do shooting the machine gun!

1.5.7 Kinematic BodyNodes

Let’s start with the machine gun bullet object. It’s similar to Force Gun bullet but will use different sprite and will
have a rectangular hitbox that collides only with enemies.

The most important difference though is that we’ll make it a kinematic body type. As said before this body type is
useful when we want to handle collisions entirely on our own.

First let’s add the machine gun bullet object and implement shooting logic:

Listing 42: objects/bullets/machine_gun_bullet.py

import random
import registry
import settings
from kaa.physics import BodyNode, BodyNodeType, HitboxNode
from kaa.geometry import Polygon, Vector
from common.enums import HitboxMask

class MachineGunBullet(BodyNode):

def __init__(self, *args, **kwargs):
super().__init__(sprite=registry.global_controllers.assets_controller.machine_

→˓gun_bullet_img,
z_index=30,
body_type=BodyNodeType.kinematic, # MG bullets are kinematic

→˓bodies
lifetime=3000, # will be removed from the scene

→˓automatically after 3 secs

*args, **kwargs)
self.add_child(HitboxNode(shape=Polygon([Vector(-13, -4), Vector(13,-4),

→˓Vector(13,4), Vector(-13,4), Vector(-13,-4)]),
mask=HitboxMask.bullet, # tell physics engine about

→˓object type
collision_mask=HitboxMask.enemy, # tell physics

→˓engine which objects it can collide with
trigger_id=settings.COLLISION_TRIGGER_MG_BULLET #

→˓ID to be used in custom collision handling function
))

36 Chapter 1. Tutorial

kaaengine

Listing 43: objects/weapons/machine_gun.py

import registry
import settings
from objects.bullets.machine_gun_bullet import MachineGunBullet
from objects.weapons.base import WeaponBase
from kaa.geometry import Vector

class MachineGun(WeaponBase):

def __init__(self):
node's properties
super().__init__(sprite=registry.global_controllers.assets_controller.machine_

→˓gun_img)

def shoot_bullet(self):
bullet_position = self.get_initial_bullet_position()
bullet_velocity = Vector.from_angle_degrees(self.parent.rotation_degrees) *

→˓settings.MACHINE_GUN_BULLET_SPEED
self.scene.space.add_child(MachineGunBullet(position=bullet_position,

→˓velocity=bullet_velocity,
rotation_degrees=self.parent.

→˓rotation_degrees))
reset cooldown time
self.cooldown_time_remaining = self.get_cooldown_time()

def get_cooldown_time(self):
return 0.100

The above is very similar to the force gun. You may run the game and see how it looks. The main difference is
that the machine gun bullets don’t bounce back when colliding with enemies. In fact they’re not affected at all by
any collisions, and behave as if they had very large mass, pushing enemies with great energy. It’s because they’re
kinematic bodies. We’ll fix that in a moment, by writing our own collision handler.

1.5.8 Collisions handling

Let’s implement a collision handler function to process collisions between machine gun bullet and en-
emy. This is where trigger_id values are being used. Put the following code in the controllers/
collisions_controller.py:

Listing 44: controllers/collisions_controller.py

import settings

class CollisionsController:

def __init__(self, scene):
self.scene = scene
self.space = self.scene.space
self.space.set_collision_handler(settings.COLLISION_TRIGGER_MG_BULLET,

→˓settings.COLLISION_TRIGGER_ENEMY,
self.on_collision_mg_bullet_enemy)

def on_collision_mg_bullet_enemy(self, arbiter, mg_bullet_pair, enemy_pair):

(continues on next page)

1.5. Part 5: Physics 37

kaaengine

(continued from previous page)

print("Detected a collision between MG bullet object {} hitbox {} and Enemy
→˓object {} hitbox {}".format(

mg_bullet_pair.body, mg_bullet_pair.hitbox, enemy_pair.body, enemy_pair.
→˓hitbox))

The line where we call set_collision_handler on the scene’s SpaceNode is where we tell the engine that
we want our function to be called each time a collision between MG bullet and enemy occurs. We’re using hitbox
trigger_id here.

It is very important to realize that a collision handler function can be called multiple times for given pair of
colliding objects (even multiple times per frame). This can happen if object’s hitboxes touch for the first time, then
they either overlap or touch each other for some time and finally - they separate. The collision handler function will
be called every frame, as long as the hitboxes touch or overlap. When they make apart, the collision handler function
stops being called.

Collision handler function always has the three parameters:

• arbiter - arbiter object that includes additional information about collision. It has the following properties:

– space - a SpaceNode where collision occurred.

– phase - an enum value (kaa.physics.CollisionPhase), indicating collision phase. Available
values are:

* kaa.physics.CollisionPhase.begin - indicates that collision betwen two objects has
started (their hitboxes have just touched or overlapped)

* kaa.physics.CollisionPhase.pre_solve - indicates that two hitboxes are still in contact
(touching or overlapping). It is called before the engine calculates the physics (e.g. velocities of both
colliding objects)

* kaa.physics.CollisionPhase.post_solve - like pre_solve, but called after the engine
calculates the physics for the objects.

* kaa.physics.CollisionPhase.separate - indicates that hitboxes of our two objects have
separated - the collision has ended

• two “collision_pair” objects, corresponding with trigger_ids. Each collision pair object has two properties:

– body - referencing BodyNode which collided

– hitbox - referencing HitboxNode which collided (remember that body nodes can have multiple hit-
boxes - here we can know which of them has collided!)

Next, let’s hook up the controller with the scene in scenes/gameplay.py’s __init__:

Listing 45: scenes/gameplay.py

from controllers.collisions_controller import CollisionsController

class GameplayScene(Scene):

def __init__(self):
......... rest of the function
self.collisions_controller = CollisionsController(self)

Run the game and shoot the machine gun at enemies to see that collision handler function is called (the print message
appears in your std out)

Now, let’s implement enemies “staggering” when hit. Stagger will simply be a number of miliseconds when alternative
frame is displayed.

38 Chapter 1. Tutorial

kaaengine

Listing 46: objects/enemy.py

class Enemy(BodyNode):

def __init__(self, position, hp=100, *args, **kwargs):
......... rest of the function
self.stagger_time_left = 0

def stagger(self):
use the "stagger" sprite
self.sprite = registry.global_controllers.assets_controller.enemy_stagger_img
stagger stops enemy from moving:
self.velocity = Vector(0, 0)
track time for staying in the "staggered" state
self.stagger_time_left = 150

def recover_from_stagger(self):
start using the standard sprite animation again
self.transition=NodeSpriteTransition(registry.global_controllers.assets_

→˓controller.enemy_frames,
duration=max(200, random.

→˓gauss(400, 100)), loops=0)

self.stagger_time_left = 0

And track stagger time and recovery in the enemies controller:

Listing 47: controllers/enemies_controller.py

class EnemiesController:
........ rest of the class

def update(self, dt):
for enemy in self.enemies:

handle enemy stagger time and stagger recovery
if enemy.stagger_time_left > 0:

enemy.stagger_time_left -= dt
if enemy.stagger_time_left <= 0:

enemy.recover_from_stagger()

Finally let’s implement the proper collision handling logic when a machine gun bullet collides with an enemy. We
would apply 10 HP damage and add a blood splatter animation at a place where collision occurred. If enemy HP drops
below zero we remove the enemy from the scene and play enemy death animation.

Listing 48: controllers/collisions_controller.py

import math
import settings
import registry
import random
from kaa.physics import CollisionPhase
from kaa.nodes import Node
from kaa.geometry import Alignment

class CollisionsController:
....... rest of the class

(continues on next page)

1.5. Part 5: Physics 39

kaaengine

(continued from previous page)

def on_collision_mg_bullet_enemy(self, arbiter, mg_bullet_pair, enemy_pair):
print("Detected a collision between MG bullet object {} hitbox {} and Enemy

→˓object {} hitbox {}".format(
mg_bullet_pair.body, mg_bullet_pair.hitbox, enemy_pair.body, enemy_pair.

→˓hitbox))

if arbiter.phase == CollisionPhase.begin:
enemy = enemy_pair.body
enemy.hp -= 10
add the blood splatter animation to the scene
self.scene.root.add_child(Node(z_index=900,

transition=NodeSpriteTransition(
registry.global_controllers.assets_

→˓controller.blood_splatter_frames,
duration=140),

position=enemy.position, rotation=mg_
→˓bullet_pair.body.rotation + math.pi,

lifetime=140))
add a random bloodstain - make smaller ones more likely since it's a

→˓small arms hit :)
self.scene.root.add_child(Node(z_index=1, sprite=random.choices(

registry.global_controllers.assets_controller.bloodstain_imgs,
→˓weights=[5, 3, 1, 0.5])[0],

position=enemy.position, rotation=mg_
→˓bullet_pair.body.rotation + math.pi,

lifetime=random.randint(20000, 40000)))
if enemy.hp <= 0:

show death animation
self.scene.root.add_child(Node(z_index=1,

transition=NodeSpriteTransition(random.
→˓choice(

registry.global_controllers.assets_
→˓controller.enemy_death_frames),

duration=450),
position=enemy.position,

→˓rotation=enemy.rotation,
origin_alignment=Alignment.right,
lifetime=random.randint(10000, 20000)))

remove enemy node from the scene
self.scene.enemies_controller.remove_enemy(enemy)

else:
enemy.stagger()

mg_bullet_pair.body.delete() # remove the bullet from the scene
return 0 # tell the engine to ignore this collision

The bullet-enemy collision handling logic is rather self-explanatory but let’s highlight a few things

First, note that we remove objects from the scene at the end of the function. Remember that when a delete() is
called on an object we can no longer use its properties, even if we only want to read them!

Next, notice return 0. This tells the engine to ignore the collision effects. Normally, the bullet (kinematic body
node) would push the enemy (dynamic body node), but we don’t want this to happen - we just want the bullet to be
destroyed on collision and we apply ‘stagger’.

Run the game and enjoy shooting at enemies with machine gun, blood splatters and bodies falling down :)

40 Chapter 1. Tutorial

kaaengine

1.5.9 Static BodyNodes

We won’t add any static BodyNodes to the game, but they’re the simplest form of nodes: they can collide with other
objects but they themselves don’t move. Use static BodyNodes when you’re sure that an object won’t transform in
any way (move, scale or rotate). Using static BodyNodes instead of dynamic/kinematic BodyNodes with no velocity
improves the performance.

1.5.10 Applying velocity to BodyNodes manually

Let’s implement a simple AI for our enemies. Let’s make each enemy be in one of the two modes:

• Moving to a waypoint - we’ll pick a random point on the screen and enemy will move towards it, when it reaches
it we’ll randomize another point

• Moving towards player - enemy will simply move towards player’s current position in a straight line

Let’s define an enum:

Listing 49: common/enums.py

class EnemyMovementMode(enum.Enum):
MoveToWaypoint = 1
MoveToPlayer = 2

Then, let’s add damping (a drag force working in entire space) to slow down enemies when they’re moving freely due
to collisions impulses (eg from Force gun bullet)

Listing 50: scenes/gameplay.py

inside __init__:
self.space = SpaceNode(damping=0.3)

Next, let’s modify the Enemy class:

Listing 51: objects/enemy.py

import random
from common.enums import EnemyMovementMode

class Enemy(BodyNode):

def __init__(self, position, hp=100, *args, **kwargs):
....... rest of the function

75% enemies will move towards player and 25% will move randomly
if random.randint(0, 100) < 75:

self.movement_mode = EnemyMovementMode.MoveToPlayer
else:

self.movement_mode = EnemyMovementMode.MoveToWaypoint
self.current_waypoint = None # for those which move to a waypoint, we'll

→˓keep its corrdinates here
self.randomize_new_waypoint() # and randomize new waypoint

self.acceleration_per_second = 300 # how fast will enemy accelerate
self.max_velocity = random.randint(75, 125) # we'll make enemy stop

→˓accelerating if velocity is above this value

(continues on next page)

1.5. Part 5: Physics 41

kaaengine

(continued from previous page)

........ other methods

def randomize_new_waypoint(self):
self.current_waypoint = Vector(random.randint(50, settings.VIEWPORT_WIDTH-50),

random.randint(50, settings.VIEWPORT_HEIGHT-
→˓50))

Finally, let’s implement the movement logic in the EnemiesController class

Listing 52: controllers/enemies_controller.py

from common.enums import EnemyMovementMode

class EnemiesController:
....... rest of the class

def update(self, dt):
player_pos = self.scene.player_controller.player.position

for enemy in self.enemies:
handle enemy stagger time and stagger recovery
if enemy.stagger_time_left > 0:

enemy.stagger_time_left -= dt
if enemy.stagger_time_left <= 0:

enemy.recover_from_stagger()

handle enemy movement
if enemy.movement_mode == EnemyMovementMode.MoveToWaypoint:

rotate towards the current waypoint:
enemy.rotation_degrees = (enemy.current_waypoint - enemy.position).to_

→˓angle_degrees()
if we're less than 10 units from the waypoint, we randomize a new

→˓one!
if (enemy.current_waypoint - enemy.position).length() <= 10:

enemy.randomize_new_waypoint()
elif enemy.movement_mode == EnemyMovementMode.MoveToPlayer:

rotate towards the player:
enemy.rotation_degrees = (player_pos - enemy.position).to_angle_

→˓degrees()
else:

raise Exception('Unknown enemy movement mode: {}'.format(enemy.
→˓movement_mode))

if enemy velocity is lower than max velocity, then increment velocity.
→˓Otherwise do nothing - the enemy

will be a freely moving object until the damping slows it down below
→˓max speed

if enemy.velocity.length() < enemy.max_velocity:
increment the velocity
enemy.velocity += Vector.from_angle_degrees(enemy.rotation_degrees).

→˓normalize()*\
(enemy.acceleration_per_second*dt/1000)

Run the game and check it out. 75% of the enemies will walk towards the player while the other ones will wander
randomly. What we’re doing here is we accelerate enemies by incrementing their velocity every frame (as discussed
before we’re taking using dt in the formula to make it independent from the frame duration). We stop the velocity
incremantation if enemy velocity exceeds the max value. When they’re above max velocity they will behave as freely

42 Chapter 1. Tutorial

kaaengine

moving objects and the drag force in the environment (“damping”) will slow them down until they’re below the max
speed and start accelerating again.

An interesting effect of this model is inertia. Enemies can’t change movement direction immediately where they stand,
they need to decelerate and accelerate again. To lower the inertia you may increase the acceleration speed. For the
freely moving enemies you may increase damping. Feel free to experiment with different values.

1.5.11 Applying impulses

Sometimes we don’t want to apply velocity each frame. Instead we want to generate a single impulse that will affect
object’s velocity just once. A good example is the explosion that can push objects back. Let’s illustrate this on the final
weapon we’ll have in the game: a grenade launcher. We want the grenade launcher to have the following features:

• Slow rate of fire (cooldown time of 1 second)

• Grenade exploding on collision with enemy, showing explosion animation

• Explosion dealing damage to all enemies in some radius, the further from the explosion center, the less damage
dealt

• Explosion pushing all enemies in some radius, the further from the explosion center, the weaker the push back
impulse

• We want pushing force to be a single-frame “impulse” applied to velocity, not some force applied each frame.

Let’s get to it.

First, let’s implement the grenade launcher bullet and grenade shooting logic. It is very similar to the machine gun
logic, just using different sprite and a different hitbox shape for bullet, and a bigger cooldown time.

Listing 53: objects/bullets/grenade_launcher_bullet.py

import random
from kaa.physics import BodyNodeType, HitboxNode, BodyNode
from kaa.geometry import Circle
import registry
import settings
from common.enums import HitboxMask

class GrenadeLauncherBullet(BodyNode):

def __init__(self, *args, **kwargs):
super().__init__(sprite=registry.global_controllers.assets_controller.grenade_

→˓launcher_bullet_img,
z_index=30,
body_type=BodyNodeType.kinematic, # as we want to handle

→˓collision effects on our own
lifetime=5000, # will be removed from the scene

→˓automatically after 5 secs
rotation_degrees=random.uniform(0, 360), # a random

→˓rotation between 0 and 360 degs

*args, **kwargs)
self.add_child(HitboxNode(shape=Circle(radius=6), # circular hitbox

mask=HitboxMask.bullet, # we are bullet
collision_mask=HitboxMask.enemy, # want to collide with objects whose

→˓mask is enemy
trigger_id=settings.COLLISION_TRIGGER_GRENADE_LAUNCHER_BULLET # used

→˓when registering collision handler function

(continues on next page)

1.5. Part 5: Physics 43

kaaengine

(continued from previous page)

))

Listing 54: objects/weapons/grenade_launcher.py

import registry
import settings
import random
from objects.bullets.grenade_launcher_bullet import GrenadeLauncherBullet
from objects.weapons.base import WeaponBase
from kaa.geometry import Vector

class GrenadeLauncher(WeaponBase):

def __init__(self):
node's properties
super().__init__(sprite=registry.global_controllers.assets_controller.grenade_

→˓launcher_img)

def shoot_bullet(self):
bullet_position = self.get_initial_bullet_position()
bullet_velocity = Vector.from_angle_degrees(self.parent.rotation_degrees) *

→˓settings.GRENADE_LAUNCHER_BULLET_SPEED
self.scene.space.add_child(GrenadeLauncherBullet(position=bullet_position,

→˓velocity=bullet_velocity))
reset cooldown time
self.cooldown_time_remaining = self.get_cooldown_time()

def get_cooldown_time(self):
return 1.0

Then, let’s write a function that will apply explosion effects, such as dealing damage and pushing enemies back Here’s
where we reset enemy velocity thus generating an impulse which will push them back away from the explosion center.

Listing 55: controllers/enemies_controller.py

import random
import registry
import math
from common.enums import EnemyMovementMode
from objects.enemy import Enemy
from kaa.geometry import Vector, Alignment
from kaa.nodes import Node

class EnemiesController:

..... rest of the class

def apply_explosion_effects(self, explosion_center, damage_at_center=100, blast_
→˓radius=200,

pushback_force_at_center=500, pushback_radius=300):
enemies_to_remove = []
for enemy in self.enemies:

get the distance to the explosion
distance_to_explosion = enemy.position.distance(explosion_center)

(continues on next page)

44 Chapter 1. Tutorial

kaaengine

(continued from previous page)

if within pushback radius...
if distance_to_explosion<=pushback_radius:

calculate pushback value, the further from the center, the smaller
→˓it is

pushback_force_val = pushback_force_at_center * (1 - (distance_to_
→˓explosion/pushback_radius))

apply the pushback force by resetting enemy velocity
enemy.velocity = (enemy.position-explosion_center).

→˓normalize()*pushback_force_val

if within blast radius...
if distance_to_explosion<=blast_radius:

calculate damage, the further from the center, the smaller it is
damage = damage_at_center * (1 - (distance_to_explosion/blast_radius))
apply damage
enemy.hp -= int(damage)
add the blood splatter animation over the enemy
self.scene.root.add_child(Node(z_index=900,

transition=NodeSpriteTransition(
registry.global_controllers.assets_

→˓controller.blood_splatter_frames,
duration=140),

position=enemy.position,
→˓rotation=(enemy.position-explosion_center).to_angle() + math.pi,

lifetime=140))

if enemy.hp < 0: # IZ DED!
show the death animation (pick random sprite from few

→˓animations we have loaded from one png file)
self.scene.root.add_child(Node(z_index=1,

→˓transition=NodeSpriteTransition(random.choice(
registry.global_controllers.

→˓assets_controller.enemy_death_frames),
duration=450),

position=enemy.position,
→˓rotation=enemy.rotation,

origin_alignment=Alignment.right,
lifetime=random.randint(10000,

→˓20000)))
mark enemy for removal:
enemies_to_remove.append(enemy)

removed killed enemies
for dead_enemy in enemies_to_remove:

self.remove_enemy(dead_enemy)

Finally let’s write a collision handler that will show explosion animation and call the apply_explosion_effect
function we’ve just written.

Listing 56: controllers/collisions_controller.py

class CollisionsController:

def __init__(self, scene):

(continues on next page)

1.5. Part 5: Physics 45

kaaengine

(continued from previous page)

....... rest of the function

self.space.set_collision_handler(settings.COLLISION_TRIGGER_GRENADE_LAUNCHER_
→˓BULLET, settings.COLLISION_TRIGGER_ENEMY,

self.on_collision_grenade_enemy)

...... rest of the class

def on_collision_grenade_enemy(self, arbiter, grenade_pair, enemy_pair):

if arbiter.phase == CollisionPhase.begin:
show explosion animation
self.scene.root.add_child(Node(transition=NodeSpriteTransition(

registry.global_controllers.assets_controller.explosion_frames,
→˓duration=12*75),

position=grenade_pair.body.position, z_index=1000, lifetime=12*75))
apply explosion effects to enemies (deal damage & push them back)
self.scene.enemies_controller.apply_explosion_effects(grenade_pair.body.

→˓position)

grenade_pair.body.delete() # remove the grenade from the scene
return 0

Run the game, spawn a lot of enemies by pressing SPACE and have fun with the grenade launcher :) Be sure to verify
they’re being pushed back by the explosion and taking damage!

That concludes chapter 5. Let’s move on to chapter 6, where we’ll add some music and sound effects to our game.

1.6 Part 6: Sound effects and music

In this chapter we’ll add sound effects and music to the game.

1.6.1 Loading sound effects from files

Loading sound effect from file is easy:

from kaa.audio import Sound
my_sound = Sound('/path/to/sound.wav')

Currently supported sound formats are:

• wav

• ogg

1.6.2 Playing sound effect

To play the sound effect:

my_sound.play(volume=0.9) # volume parameter ranging from 0 to 1, default is 1

You can play many sound effects simultaneously. There is a max limit of simultaneous sound that can be played. To
change the limit use Scene’s audio.mixing_channels property.

46 Chapter 1. Tutorial

kaaengine

Note: Setting max limit to a very large number and playing very large number of sounds simultaneously may degrate
performace of your game.

1.6.3 Stopping sound effect being played

When you call play() on a Sound, kaa will play the whole sound. If you want to stop playing the sound effect
manually, you need to wait until next version of kaa because stopping sound effects is not yet implemented.

1.6.4 Loading music files from files

Loading music tracks is very similar to loading sound effects:

from kaa.audio import Music
my_music_track = Music('/path/to/music_track.wav')

Currently supported music formats are:

• wav

• ogg

1.6.5 Playing music track

To play the music track call play on your Music object:

my_music_track.play(volume=1.0)

You can play only one music track at a time. Playing new music track automatically stops the current track being
played.

1.6.6 Stopping music track

If you want to just stop the current track being played without replacing it with a new track:

from kaa.audio import Music
Music.get_current().stop()

1.6.7 Knowing when music track has ended

Typically you will like to know when the current music track has ended so you can select a new one. To do this look
for the audio events in the Scene’s events() list:

class MyScene(Scene):

def update(dt)

for event in self.input.events():
if event.audio: # check if it's an audio related event

if event.audio.music_finished:
do something when the track has finished playing ...

1.6. Part 6: Sound effects and music 47

kaaengine

1.6.8 Full example

Let’s use the sound and music in our tutorial game.

First, let’s load all assets from files first, in our AssetsController

Listing 57: controllers/assets_controller.py

from kaa.audio import Sound, Music

class AssetsController:

def __init__(self):

..... rest of the function

Load all sounds
self.mg_shot_sound = Sound(os.path.join('assets', 'sfx', 'mg-shot.wav'))
self.force_gun_shot_sound = Sound(os.path.join('assets', 'sfx', 'force-gun-

→˓shot.wav'))
self.grenade_launcher_shot_sound = Sound(os.path.join('assets', 'sfx',

→˓'grenade-launcher-shot.wav'))
self.explosion_sound = Sound(os.path.join('assets', 'sfx', 'explosion.wav'))

Load all music tracks
self.music_track_1 = Music(os.path.join('assets', 'music', 'track_1.wav'))

Let’s play the music when the game starts.

Listing 58: main.py

with Engine(virtual_resolution=Vector(settings.VIEWPORT_WIDTH, settings.VIEWPORT_
→˓HEIGHT)) as engine:

initialize global controllers and remember them in the registry
registry.global_controllers.assets_controller = AssetsController()
play music
registry.global_controllers.assets_controller.music_track_1.play()

.... rest of the code

Note: main.py isn’t the best place to put this code. The music will stop playing after the track ends. To make it more
usable maybe we should have a MusicController to manage tracks, and take care of starting new track when the
previous ends? We’ll leave this task to you :)

Let’s play shooting sounds for the guns we have in the game:

Listing 59: objects/weapons/force_gun.py

class ForceGun(WeaponBase):

def shoot_bullet(self):
.... rest of the function

play shooting sound
registry.global_controllers.assets_controller.force_gun_shot_sound.play()

48 Chapter 1. Tutorial

kaaengine

Listing 60: objects/weapons/grenade_launcher.py

class GrenadeLauncher(WeaponBase):

def shoot_bullet(self):
.... rest of the function

play shooting sound
registry.global_controllers.assets_controller.grenade_launcher_shot_sound.

→˓play()

Listing 61: objects/weapons/machine_gun.py

class MachineGun(WeaponBase):

def shoot_bullet(self):
.... rest of the function

play shooting sound
registry.global_controllers.assets_controller.mg_shot_sound.play()

And the explosion sound:

Listing 62: controllers/enemies_controller.py

class EnemiesController:

def apply_explosion_effects(self, explosion_center, damage_at_center=40, blast_
→˓radius=150,

pushback_force_at_center=500, pushback_radius=300):
play explosion sound
registry.global_controllers.assets_controller.explosion_sound.play()
.... rest of the function

Run the game and enjoy the experience with sounds and music. When you’re ready, move on to the part 7 of the
tutorial where we’ll learn how to draw text.

1.7 Part 7: Drawing text

In this chapter we’ll lear how to draw text in the game

1.7.1 Loading fonts from files

In order to draw a text, we must first load a font from a file. Like with images or sounds, it’s very easy:

from kaa.fonts import Font
my_font = Font('/path/to/font.ttf')

Font formats currently supported by kaa:

• ttf

1.7. Part 7: Drawing text 49

kaaengine

1.7.2 Drawing text

To draw a text, create a TextNode and add it to the scene. TextNode extends basic Node and therefore inherits all
its properties - position, rotation, scale, color, origin_alignment etc. It adds the following new properties:

• font - A font to use when rendering text. Pass a Font instance.

• text - a string. A text you want to draw.

• font_size - an integer. Size of the text.

• line_width - an integer. Width of the text, in pixels. If set, the text will wrap automatically to fit this width.
If not set, text won’t wrap.

• interline_spacing - an integer. Space between lines of text in pixels. Used when the text wraps (due to
line_width).

• first_line_indent - an integer. Indentation for the first line. Useful when you have multiple line texts
(due to line_width)

1.7.3 Full example

Let’s load a font from file and add some texts in the game.

Listing 63: controllers/assets_controller.py

from kaa.fonts import Font

class AssetsController:

def __init__(self):
... the rest of the function

Load all fonts
self.font_1 = Font(os.path.join('assets', 'fonts', 'paladise-script.ttf'))
self.font_2 = Font(os.path.join('assets', 'fonts', 'DejaVuSans.ttf'))

Listing 64: scenes/gameplay.py

import registry
import settings
from kaa.geometry import Vector, Alignment
from kaa.fonts import TextNode
from kaa.colors import Color

class GameplayScene(Scene):

def __init__(self):
super().__init__()
self.frag_count = 0
self.root.add_child(TextNode(font=registry.global_controllers.assets_

→˓controller.font_1,
origin_alignment=Alignment.left, position=Vector(10, 20),

→˓font_size=40, z_index=1,
text="WASD to move, mouse to rotate, left mouse button to

→˓shoot"))
self.root.add_child(TextNode(font=registry.global_controllers.assets_

→˓controller.font_1,

(continues on next page)

50 Chapter 1. Tutorial

kaaengine

(continued from previous page)

origin_alignment=Alignment.left, position=Vector(10, 45),
→˓font_size=40, z_index=1,

text="1, 2, 3 - change weapons. SPACE - spawn enemy"))
self.root.add_child(TextNode(font=registry.global_controllers.assets_

→˓controller.font_2,
origin_alignment=Alignment.right, position=Vector(1910,

→˓20), font_size=30, z_index=1,
color=Color(1, 0, 0, 1), text="Press Q to quit game"))

self.frag_count_label = TextNode(font=registry.global_controllers.assets_
→˓controller.font_1,

origin_alignment=Alignment.left, position=Vector(10, 70),
→˓font_size=40, z_index=1,

color=Color(1, 1, 0, 1), text="")
self.root.add_child(self.frag_count_label)
.... rest of the code

def score_frag(self):
function for tracking frag count
self.frag_count += 1
self.frag_count_label.text = f"Frag Count: {self.frag_count}"

Run the game and check out the results!

Note: When adding TextNode to the scene it’s important to give them proper z_index. Games will usually have
some background image and you may often be wondering “why is that TextNode not visible”? Most likely it’s because
of z_index being too low and some other sprite is rendering in front of it!

1.7.4 Updating text

Updating text property of the TextNode is a performance-heavy operation and you should avoid updating text
property on each frame (unless it’s really needed). In our case, we only need to update the frag count when an enemy
is killed. We’ve already written a score_frag function, let’s now call it:

Listing 65: controllers/enemies_controller.py

class EnemiesController:

def remove_enemy(self, enemy):
self.enemies.remove(enemy) # remove from the internal list
enemy.delete() # remove from the scene
increment the frag counter
self.scene.score_frag()

1.7.5 Transforming text

Since text nodes are regular Nodes, you can use all of base Node properties to transform them, e.g. reposition, rotate,
scale, etc.

my_text_node.rotation_degrees = 45
my_text_node.scale = Vector(0.5, 0.75)

Text Nodes can also be a child nodes of other nodes, and can have child nodes themselves.

1.7. Part 7: Drawing text 51

kaaengine

tn = TextNode(font = my_font, text="Hello world")
tn.add_child(Node(sprite=my_sprite))

Let’s move on, to the next part of the tutorial

1.8 Part 8: Working with multiple scenes

So far we have had just one Scene in our game, the GameplayScene. Let’s add two more: for the title screen and
for the pause screen. Even though we’ll have 3 scenes created in the game, only one of them can be active at a time.
It means that only active scene will render its nodes on the screen, run the update() loop and receive input events.
The other scenes will become “freezed” until one of them is activated again. Their update() loops won’t be called,
no input events will be published to them, no nodes present in those scenes will be drawn on the screen etc.

1.8.1 How to activate a new scene

To make another scene active, get an engine object first, and then call change_scene(new_scene) method.

To get an engine:

from kaa.engine import get_engine
engine = get_engine()
engine.change_scene(some_new_scene)

Each scene has the engine object stored under self.engine so you can get it from there as well:

.... inside kaa.engine.Scene class method
self.engine.change_scene(some_new_scene)

1.8.2 How to create a new scene

Let’s write two more scenes:

• GameTitleScene - Will be activated when the game starts. The scene will be a welcome screen, showing a
logo and allowing to start the game or exit it.

• PauseScene - Will be activated when pressing ESC during gameplay. Will show a simple screen allowing to
abort game (return to title screen) or resume game (return to gameplay scene)

Listing 66: scenes/title_screen.py

import registry
import settings
from kaa.engine import Scene
from kaa.input import Keycode, MouseButton
from kaa.nodes import Node
from kaa.geometry import Vector, Alignment
from kaa.fonts import TextNode

class TitleScreenScene(Scene):

def __init__(self):
super().__init__()

(continues on next page)

52 Chapter 1. Tutorial

kaaengine

(continued from previous page)

self.root.add_child(Node(sprite=registry.global_controllers.assets_controller.
→˓title_screen_background_img,

z_index=0, position=Vector(0,0), origin_
→˓alignment=Alignment.top_left))

self.root.add_child(TextNode(font=registry.global_controllers.assets_
→˓controller.font_2, font_size=30,

position=Vector(settings.VIEWPORT_WIDTH/2, 500),
→˓text="Click to start the game",

z_index=1, origin_alignment=Alignment.center))
self.root.add_child(TextNode(font=registry.global_controllers.assets_

→˓controller.font_2, font_size=30,
position=Vector(settings.VIEWPORT_WIDTH/2, 550),

→˓text="Press ESC to exit",
z_index=1, origin_alignment=Alignment.center))

def update(self, dt):

for event in self.input.events():

if event.keyboard_key:
if event.keyboard_key.is_key_down and event.keyboard_key.key ==

→˓Keycode.escape:
self.engine.quit()

if event.mouse_button:
if event.mouse_button.is_button_down and event.mouse_button.button ==

→˓MouseButton.left:
self.engine.change_scene(registry.scenes.gameplay_scene)

Nothing unusual here, just the stuff we already know: the scene is pretty static, with just a background image and two
labels. Mouse click changes the scene to gameplay and ESC quits the game. It won’t work yet, because registry object
does not store gameplay_scene yet, but we’ll get there.

For now, let’s add the pause scene. It is very similar to the title screen scene:

Listing 67: scenes/pause.py

import registry
import settings
from kaa.engine import Scene
from kaa.input import Keycode
from kaa.geometry import Vector, Alignment
from kaa.fonts import TextNode

class PauseScene(Scene):

def __init__(self):
super().__init__()
self.root.add_child(TextNode(font=registry.global_controllers.assets_

→˓controller.font_2, font_size=40,
position=Vector(settings.VIEWPORT_WIDTH/2, 300),

→˓text="GAME PAUSED",
z_index=1, origin_alignment=Alignment.center))

self.root.add_child(TextNode(font=registry.global_controllers.assets_
→˓controller.font_2, font_size=30,

position=Vector(settings.VIEWPORT_WIDTH/2, 550),
→˓text="Press ESC to resume", (continues on next page)

1.8. Part 8: Working with multiple scenes 53

kaaengine

(continued from previous page)

z_index=1, origin_alignment=Alignment.center))
self.root.add_child(TextNode(font=registry.global_controllers.assets_

→˓controller.font_2, font_size=30,
position=Vector(settings.VIEWPORT_WIDTH/2, 650),

→˓text="Press q to abort",
z_index=1, origin_alignment=Alignment.center))

def update(self, dt):
for event in self.input.events():

if event.keyboard_key and event.keyboard_key.is_key_down:
if event.keyboard_key.key == Keycode.escape:

self.engine.change_scene(registry.scenes.gameplay_scene)
if event.keyboard_key.key == Keycode.q:

self.engine.change_scene(registry.scenes.title_screen_scene)

Let’s now make a small modification to the GameplayScene allowing to change scene to pause, when player presses
ESC.

Listing 68: scenes/gameplay.py

def update(self, dt):
.... other code

for event in self.input.events():
.... other code
if event.keyboard_key and event.keyboard_key.is_key_down:

if event.keyboard_key.key == Keycode.escape:
self.engine.change_scene(registry.scenes.pause_scene)

Finally, let’s create all our scenes in the main.py and add them to the registry to make the change_scene calls
work!

Listing 69: main.py

from scenes.pause import PauseScene
from scenes.title_screen import TitleScreenScene

with Engine(virtual_resolution=Vector(settings.VIEWPORT_WIDTH, settings.VIEWPORT_
→˓HEIGHT)) as engine:

.... rest of the function

initialize scenes and remember them in the registry
registry.scenes.gameplay_scene = GameplayScene()
registry.scenes.title_screen_scene = TitleScreenScene()
registry.scenes.pause_scene = PauseScene()
engine.run(registry.scenes.title_screen_scene)

Run the game. Isn’t it much better with all those different screens? I think it is!

1.8.3 Starting a new game

If you test the flow of the game, you’ll notice the following bug: aborting game and then starting new game just returns
to the previous state of the scene: all monsters are where they were left, frag count is not reset and so on. It’s because
change_scene does not destroy scene state it just runs a new scene and freezes all other scenes, as we stated earlier.

54 Chapter 1. Tutorial

kaaengine

A bug needs fixing! Let’s refactor the TitleScreenScene a little bit:

Listing 70: scenes/title_screen.py

from scenes.gameplay import GameplayScene

class TitleScreenScene(Scene):
.... rest of the class

def start_new_game(self):
registry.scenes.gameplay_scene = GameplayScene()
self.engine.change_scene(registry.scenes.gameplay_scene)

def update(self, dt):
for event in self.input.events():

... other code ...
if event.mouse_button and event.mouse_button.is_button_down and event.

→˓mouse_button.button == MouseButton.left:
self.start_new_game()

We simply create the new instance of GameplayScene before telling engine to change to that scene. Run the game
again and enjoy the full experience of multiple scenes :)

1.8.4 Scene’s on_enter and on_exit methods

Scene has two methods on_enter and on_exit. They’re being used when you call change_scene so you can
do some additional initialization or cleanup before the scene loads.

class Gameplay(Scene):

def on_enter(self):
do something when active scene changes TO this scene.

def on_exit(self):
do something when active scene changes FROM this scene.

Let’s move on to the next part of the tutorial where we’ll learn few things about the camera.

1.9 Part 9: The camera

Camera projects the scene into your 2D display. Controlling the camera allows us to add few extra visual effects.

1.9.1 Getting the camera

Camera is available directly in the scene:

class SomeScene(kaa.engine.Scene):

def foo(self):
hi_i_am_camera = self.camera # the camera is here!

1.9. Part 9: The camera 55

kaaengine

1.9.2 Camera properties

The camera object has the following properties:

• position - allows to move the camera

• rotation - allows to rotate the camera (using radians)

• rotation_degrees - allows to rotate the camera (using degrees)

• scale - allows for applying a zoom in / zoom out effect

The camera object has also the following method:

• unproject_position(position_vector) - a helper function that transforms a current screen position
into absolute position by applying current camera transformations. Practical use is illustrated below.

1.9.3 Full Example

Let’s use the camera in our game:

• arrow keys to move the camera up, down, left right

• page up and page down keys to change the camera’s scale up and down

• home and end keys to rotate the camera clockwise and anti-clockwise

Let’s add the following code to the GameplayScene

Listing 71: scenes/gameplay.py

class GameplayScene(Scene):
... rest of the class ...

def update(self, dt):
... other code

if self.input.keyboard.is_pressed(Keycode.left):
self.camera.position -= Vector(-0.1 * dt, 0)

if self.input.keyboard.is_pressed(Keycode.right):
self.camera.position -= Vector(0.1 * dt, 0)

if self.input.keyboard.is_pressed(Keycode.up):
self.camera.position -= Vector(0, -0.1 * dt)

if self.input.keyboard.is_pressed(Keycode.down):
self.camera.position -= Vector(0, 0.1 * dt)

if self.input.keyboard.is_pressed(Keycode.pageup):
self.camera.scale -= Vector(0.001*dt, 0.001*dt)

if self.input.keyboard.is_pressed(Keycode.pagedown):
self.camera.scale += Vector(0.001*dt, 0.001*dt)

if self.input.keyboard.is_pressed(Keycode.home):
self.camera.rotation_degrees += 0.03 * dt

if self.input.keyboard.is_pressed(Keycode.end):
self.camera.rotation_degrees -= 0.03 * dt

Run the game and see how you can control the camera in the gameplay scene using arrow keys, page up/down and
home/end keys.

Have you noticed? When you transform the camera (especially when you rotate it) and then shoot your guns, the
bullets don’t fly where they should. . . If the mouse pointer is in the (0,0) position i.e. top-left of the screen, the bullets

56 Chapter 1. Tutorial

kaaengine

don’t fly to that exact place but to the top-left corner of the projected image of the scene. It’s not a bug, it’s a feature!
Point (0,0) of the scene always is a (0,0) regardless of transformations applied to the camera!

In other words, if we apply a transformation to the camera we also need to apply the same transformation to the
get_mouse_position() function! That’s where camera’s unproject_position(position_vector)
function can help.

Let’s modify the code in PlayerController where get_mouse_position() is used.

Listing 72: controllers/player_controller.py

that fragment inside update() function....
elif event.keyboard_key.key == Keycode.space:

self.scene.enemies_controller.add_enemy(Enemy(position=self.scene.camera.
→˓unproject_position(

self.scene.input.mouse.get_position()), rotation_degrees=random.randint(0,
→˓360)))

another fragment inside update() function:
mouse_pos = self.scene.camera.unproject_position(self.scene.input.mouse.get_
→˓position())

Run the game again and verify that shooting guns and spawning enemies have been fixed.

Moving the player is more interesting problem, but we won’t change it now. After all, the player always moves the
same way it’s just the way we look at it that changes!

1.9.4 There isn’t a “global” camera, each scene has its own

Each scene has its own camera, so if you apply transformation to a camera in scene A, and then change the scene to B
then the camera in scene B will not be affected by those transformations!

That’s all you need to know about camera for now. Let’s move on to the next part of the tutorial.

1.10 Part 10: Transitions

We’re already familiar with the SpriteNodeTransition object which we used to make Node’s sprite change,
creating a frame-by-frame animation effect. We mentioned that transitions are much general and powerful mechanism.
It’s time to explain what they are and how to use them.

When writing a game you’ll often want to apply a set of known transformations to an object. For example, you
want your object to move 100 pixels to the right, then wait 3 seconds and return 100 pixels to the left. Or you want
to implement pulsation effect where an object would smoothly change its scale between some min and max values.
There’s an unlimited number of such visual transformations that you may want in your games as they greatly improve
the game experience.

You can of course implement all this by having a set of boolean flags, time trackers, etc. and use all those helper
variables to change the desired properties of your nodes over time manually. But there is an easier way: Transitions.

A single Transition object is a ‘recipe’ of how a given property of a Node (position, scale, rotation, etc.) should change
over time. Transition can be applied to object once, given number of times or in a loop. You can chains transitions to
run serially or in parallel.

It’s best to illustrate on an example, so let’s do it!

1.10. Part 10: Transitions 57

kaaengine

1.10.1 Adding a Transition to a Node

Let’s practice transitions on a text node we have in the title screen.

Let’s start by refactoring the code in __init__:

Listing 73: scenes/title_screen.py

class TitleScreenScene(Scene):

def __init__(self):
... cut the rest of the function
self.exit_label = TextNode(font=registry.global_controllers.assets_controller.

→˓font_2, font_size=30,
position=Vector(settings.VIEWPORT_WIDTH/2, 550),

→˓text="Press ESC to exit",
z_index=1, origin_alignment=Alignment.center)

self.root.add_child(self.exit_label)
self.transitions_fun_stuff()

Then add the transitions_fun_stuff method:

Listing 74: scenes/title_screen.py

from kaa.transitions import *

def transitions_fun_stuff(self):
my_transition = NodePositionTransition(Vector(300, 850), duration=3000)
self.exit_label.transition = my_transition

Run the game and see the label moving from its original position to (300, 850), the movement takes 3 seconds! We
did not have to change its position manually inside update(), it all happened automatically. Isn’t it cool?

1.10.2 Changing a value incrementally

The transition we wrote takes node position and changes it (over 3 seconds) to the final value. But what if we don’t
want to move a node to a know position, but just 50 pixels to the left and 200 pixels down?

Listing 75: scenes/title_screen.py

def transitions_fun_stuff(self):
my_transition = NodePositionTransition(Vector(-50, 200), duration=3000,

advance_method=AttributeTransitionMethod.
→˓add)

self.exit_label.transition = my_transition

Available advance_method values are:

• kaa.transitions.AttributeTransitionMethod.set - the default mode. The target value is set directly.

• kaa.transitions.AttributeTransitionMethod.add - The target value will be calculated by adding operation

• kaa.transitions.AttributeTransitionMethod.multiply - The target value will be calculated by multiplying opera-
tion

58 Chapter 1. Tutorial

kaaengine

1.10.3 Running transition back and forth

To run transition back and forth simply set back_and_forth=True on a transition object:

Listing 76: scenes/title_screen.py

def transitions_fun_stuff(self):
my_transition = NodePositionTransition(Vector(-50, 200), duration=3000,

advance_method=AttributeTransitionMethod.
→˓add,

back_and_forth=True)
self.exit_label.transition = my_transition

Notice that the 3000 milisecond is the one-way time duration. Total transition duration back and forth takes 6000
miliseconds

1.10.4 Running transition specific number of times

To run transition specific number of times, set loops on a transition object to a desired value:

Listing 77: scenes/title_screen.py

def transitions_fun_stuff(self):
my_transition = NodePositionTransition(Vector(-50, 200), duration=3000,

advance_method=AttributeTransitionMethod.
→˓add,

back_and_forth=True, loops=3)
self.exit_label.transition = my_transition

Run it and see that it moves back and forth 3 times.

Note: See what happens if you set loops to some value without back_and_forth set to False

1.10.5 Running transition infinite number of times

To run transition in an infinite loop set loops on a transition object to 0.

1.10.6 All types of transitions

We’ve learned about NodePositionTransition but what other transitions are available?

• kaa.transitions.NodeSpriteTransition - changes sprite of a node (we’ve already learned that)

• kaa.transitions.NodePositionTransition - changes position of a node

• kaa.transitions.NodeRotationTransition - changes rotation of a node

• kaa.transitions.NodeScaleTransition - changes scale of a node

• kaa.transitions.NodeColorTransition - changes color of a node

• kaa.transitions.BodyNodeVelocityTransition - changes velocity of a node (applicable to Bo-
dyNodes only)

1.10. Part 10: Transitions 59

kaaengine

• kaa.transitions.BodyNodeAngularVelocityTransition - changes angular velocity of a node
(applicable to BodyNodes only)

• kaa.transitions.NodeTransitionDelay - waits for given number of miliseconds - useful when you
chain few transitions together

It is also possible to write custom transitions, it’s covered further below.

1.10.7 Chaining transitions

Let’s build a chain of transitions: first we want the node to change its position, then rotate, then wait 0.5 second, then
scale, and finally change color. To build such a sequence we’ll use NodeTransitionsSequence

Listing 78: scenes/title_screen.py

from kaa.colors import Color
import math

def transitions_fun_stuff(self):
move_transition = NodePositionTransition(Vector(-50, 200), duration=1000, advance_

→˓method=AttributeTransitionMethod.add)
rotate_transition = NodeRotationTransition(2*math.pi, duration=1000) # rotate 180

→˓degrees (2*pi radians)
wait_transition = NodeTransitionDelay(duration=500)
scale_transition = NodeScaleTransition(Vector(2, 2), duration=1000) # enlarge

→˓twice
color_transition = NodeColorTransition(Color(1, 0, 0, 1), duration=1000) # change

→˓color to red
transition_sequence = NodeTransitionsSequence([move_transition, rotate_transition,

→˓ wait_transition,
scale_transition, color_

→˓transition])
self.exit_label.transition = transition_sequence

Run the game and enjoy the nice transition sequence!

NodeTransitionsSequence has two already known properties: back_and_forth and loops. You can use
them to run the whole sequence back and forth, specific number of times or in an infinite loop.

1.10.8 Knowing that a transition has ended

Sometimes we may want to be able to run some code when transition has ended, or when we reached some point in a
chain of transition. We can use NodeTransitionCallback. It’s only parameter is a callable. Let’s show this on
an example:

Listing 79: scenes/title_screen.py

def transition_callback_function(self, node):
play explosion sound
registry.global_controllers.assets_controller.explosion_sound.play()

def transitions_fun_stuff(self):
move_transition = NodePositionTransition(Vector(-50, 200), duration=1000, advance_

→˓method=AttributeTransitionMethod.add)
callback_transition = NodeTransitionCallback(self.transition_callback_function) #

→˓call that function

(continues on next page)

60 Chapter 1. Tutorial

kaaengine

(continued from previous page)

rotate_transition = NodeRotationTransition(2*math.pi, duration=1000) # rotate 180
→˓degrees (2*pi radians)

wait_transition = NodeTransitionDelay(duration=500)
scale_transition = NodeScaleTransition(Vector(2, 2), duration=1000) # enlarge

→˓twice
color_transition = NodeColorTransition(Color(1, 0, 0, 1), duration=1000) # change

→˓color to red
transition_sequence = NodeTransitionsSequence([move_transition, callback_

→˓transition,
rotate_transition, wait_transition,
scale_transition, color_

→˓transition])
self.exit_label.transition = transition_sequence

It’s pretty self-explanatory isn’t it? callback_transition is executed between move_transition and rotate_transition
therefore we hear explosion sound at that very moment.

1.10.9 Running transitions in paralel

Let’s say we want to run some transitions (or sequences of those) in paralel. It’s quite easy: we need to use
NodeTransitionsParallel. Let’s have our node rotate, scale, change color and move at the same time.

Listing 80: scenes/title_screen.py

def transitions_fun_stuff(self):
rotate_transition = NodeRotationTransition(2*math.pi, duration=1000) # rotate 180

→˓degrees (2*pi radians)
scale_transition = NodeScaleTransition(Vector(2, 2), duration=1000) # enlarge

→˓twice
color_transition = NodeColorTransition(Color(1, 0, 0, 1), duration=1000) # change

→˓color to red

move_transition1 = NodePositionTransition(Vector(-200, 0), duration=1000,
advance_method=AttributeTransitionMethod.add)

move_transition2 = NodePositionTransition(Vector(200, 200), duration=1000,
advance_method=AttributeTransitionMethod.add)

move_transition3 = NodePositionTransition(Vector(200, -200), duration=1000,
advance_method=AttributeTransitionMethod.add)

move_transition4 = NodePositionTransition(Vector(-200, 0), duration=1000,
advance_method=AttributeTransitionMethod.add)

move_sequence = NodeTransitionsSequence([move_transition1, move_transition2, move_
→˓transition3, move_transition4], loops=0)

paralel_sequence = NodeTransitionsParallel([rotate_transition, scale_transition,
→˓color_transition], back_and_forth=True, loops=0)

run both the movement sequence and rotate+scale+color sequence in paralel
self.exit_label.transition = NodeTransitionsParallel([

move_sequence, paralel_sequence])

Note that NodeTransitionsParallel has two already known properties: back_and_forth and loops.

You can nest transition sequences in other sequences, run such nested sequences in paralel and so on. Be aware on
which level you set the back_and_forth and loops param values. Feel free to experiment with transitions on
your own.

1.10. Part 10: Transitions 61

kaaengine

1.10.10 Contradictory transitions?

What happens if you try to run two position transitions in paralel: one moving a node 100 pixels to the right and the
other moving it 100 pixels to the left. Contrary to intuition, they won’t cancel out (regardless of advance_method
being add or set). If there are two or more transitions of the same type running in paralel, then the one which is later
in the list will be used and the preceding ones will be ignored.

1.10.11 Implementing custom transitions

You can implement your own transition, where you can fully control what’s happening with the node over time.

Use CustomNodeTransition class. It takes 3 parameters:

• A callable with one parameter of type <Node>. This function will be called once, when the transition is assigned
to a Node (it will pass that Node as parameter). Imeplement this function to return a state.

• A callable with three parameters: state, node and t. It will be called every frame during which the transition
is in effect. State parameter is an object you prepared in the previous callable. Node parameter is the node that’s
transitioning. t is a value between 0 and 1 indicating time progress of present transition cycle

• A numerical value - duration of transition in miliseconds

CustomNodeTransition also has the back_and_forth and loops described in sections above.

1.10.12 Different easing patterns

As you probably noticed, transitions change the property of a node over time in a linear fashion. In other words, if
transition orders the node to change rotation by 100 degrees in 10 seconds then the node will progress at a steady rate
of 10 degrees per second.

Future kaa versions will have more types of “easing functions”, other than linear, expect something similar to this

Let’s move on to the last part of the tutorial where we’ll build the game as executable file (.exe on Windows or binary
executable on Linux)

1.11 Part 11: Building executable file and distributing via Steam

When distributing your game to other people (via Steam or other platform), you cannot give them a bunch of .py files.
A distributable package must include a “native” executable file (exe on Windows or binary executable on Linux).

There are few tools that build native executables from python scripts. We’ll use pyinstaller.

First, you need to install pyinstaller.

pip install pyinstaller

Then, navigate to the foder with main.py and run the following command:

pyinstaller --onefile --windowed --hidden-import numbers --icon assets\gfx\icon.ico
→˓main.py

If the command ran successfully, pyinstaller should create the following folders/files in your project folder:

• dist folder - this is where you’ll find the game executable (“main.exe” on Windows or “main” binary executable
on Linux)

• build folder - just pyinstaller’s build stuff

62 Chapter 1. Tutorial

https://easings.net/

kaaengine

• main.spec file

To complete the work, copy the assets folder to the dist folder and try running the executable file.

Did it work? Congratulations, you have completed the tutorial and wrote a fully functional game! Don’t hesitate to
show it to your friends and family :)

Few remarks on switches we used in the pyinstaller command:

• icon - adds an icon to the exe file, to replace the ugly default icon

• hidden-import numbers - tells pyinstaller to import an additional dependency used by kaa which is not
exposed directly, thus invisible to pyinstaller

• onefile - tells pyinstaller to add all dependencies to form just one executable file. Without this flag, dist
folder will have a bunch of other lib files which you’ll need to distribute with the game.

• windowed - tells pyinstaller that it’s not a python script but a windowed app

Check out the pyinstaller documentation for much better description of all available options and their meaning.

1.11.1 Troubleshooting

• The executable was built successfully but fails to run, showing just “failed to execute script ‘main’”? Delete the
dist and build folders and run the pyinstaller command again, without :code:‘–onefile‘ and :code:‘–windowed‘
options. Then run the game from the command line (cmd.exe on Windows or terminal on Linux). It will print
out python stack trace which hopefully will tell you more about the problem.

• if pyinstaller command did not complete successfully, check out the error message and look at the logs
(inside “build” folder which will also.

1.11.2 Distributing kaa games on steam

Once you have distributable package (assets + binary executable) you can distribute it via Steam. Whe you configure
your game for distribution in the Steamworks panel, be sure to go to Installation->Redistributable Packages and select
“Visual C++ Redist 2017” and “DirectX June 2010”

1.11.3 Games made with kaa

“Git Gud or Get Rekt!” - retro space shooter, available for free on Steam

Did you make your own game with the kaa engine? Let us know! We’ll be more than happy to include it on the list.

1.11. Part 11: Building executable file and distributing via Steam 63

https://pyinstaller.readthedocs.io/en/stable/
https://store.steampowered.com/app/1117810/Git_Gud_or_Get_Rekt

kaaengine

64 Chapter 1. Tutorial

CHAPTER

TWO

KAA ENGINE REFERENCE

2.1 audio — Sound effects and music

2.1.1 Sound reference

class audio.Sound(sound_filepath, volume=1.0)
A Sound object represents a sound effect. Multiple sound effects can be played simultaneously.

sound_filepath argument must point to a sound file in a compatible format. Currently supported formats are:

• wav

• ogg

volume paramter must be a value between 0 and 1

Instance properties:

Sound.volume
Gets or sets a default volume of the sound effect.

Instance methods:

Sound.play(volume=1.0)
Plays the sound effect.

Volume is a value between 0 and 1. The volume is modified by the master sound volume level setting.

Refer to engine.AudioManager documentation on how to set the master volume for sounds.

Multiple sound effects can be played simultaneously, up to a limit set on the AudioManager.mixing_channels
property.

The play() method is a simple “fire and forget” mechanism. It does not allow you to stop, pause or resume the
sound. If you need more control on how the sound effects playback, use the SoundPlayback wrapper.

2.1.2 SoundPlayback reference

class audio.SoundPlayback(sound, volume=1.0)
A wrapper class for Sound objects, offering more control over sound effects playback.

The sound parameter must be a Sound instance.

Volume must be a value between 0 and 1.

Instance properties:

65

kaaengine

SoundPlayback.sound
Read only. Returns the wrapped Sound instance

SoundPlayback.status
Read only. Returns the sound status, as AudioStatus enum value.

SoundPlayback.is_playing
Read only. Returns True if the sound is playing.

SoundPlayback.is_paused
Read only. Returns True if the sound is paused.

SoundPlayback.volume
Gets or sets the volume. Must be a number between 0 and 1.

Instance methods:

SoundPlayback.play(loops=1)
Plays the sound effect.

The loops parameter is how many times the sound should play. Set to 0 to play the sound in the infinite loop.

Multiple sound effects can be played simultaneously, up to a limit set on the AudioManager.mixing_channels
property.

Use stop(), pause() and resume() methods to control the sound playback.

SoundPlayback.stop()
Stops the sound playback if it’s playing or paused.

SoundPlayback.pause()
Pauses the sound playback if it’s playing.

SoundPlayback.resume()
Resumes the sound playback if it’s paused.

2.1.3 Music reference

class audio.Music(music_filepath, volume=1.0)
A Music object represents a single music track. There’s more control over playing Music tracks than Sounds
as you can pause, resume or stop them on demand. Only one music track can be played at a time.

music_filepath argument must point to a soundtrack file in a compatible format. Currently supported formats
are:

• wav

• ogg

Class methods

classmethod Music.get_current()
Returns Music instance currently being played

Instance properties

Music.status
Read only. Returns the status of the Music track, as AudioStatus enum value.

Music.is_playing
Read only. Returns True if the music is playing.

Music.is_paused
Read only. Returns True if the music is paused.

66 Chapter 2. Kaa engine Reference

kaaengine

Music.volume
Gets or sets a default volume of the music track.

Instance methods

Music.play(volume=1.0)
Starts playing the music track. If another music track is playing it is automatically stopped.

Volume is a value between 0 and 1. The volume is modified by the master music volume level setting.

Refer to engine.AudioManager documentation on how to set the master volume for music.

Music.pause()
Pauses the music track currently being played. Can be resumed with Music.resume() method

Music.resume()
Resumes music track paused by Music.pause(). If the track is not paused, it does nothing.

Music.stop()
Stops the music track.

2.1.4 AudioStatus reference

class audio.AudioStatus
Enum type used for referencing sound or music status when working with Music, Sound and
SoundPlayback objects. It has the following values:

• AudioStatus.playing

• AudioStatus.paused

• AudioStatus.stopped

2.2 colors — Wrapper class for colors

2.2.1 Color reference

Constructor:

class colors.Color(r=0.0, g=0.0, b=0.0, a=1.0)
A Color represents a color in RGBA format. Color is a property attribute of a nodes.Node instance and all
its subclasses e.g. physics.BodyNode, physics.BodyNode, fonts.TextNode etc.

Giving nodes.Node a color tints this node’s geometry.Shape in that color. In case of text nodes it sets
the color of the text.

Parameters r, g, b and a are red, green, blue and alpha. They take values between 0 and 1.

Instance properties (read only):

Color.r
Returns red value

Color.g
Returns green value

Color.b
Returns blue value

2.2. colors — Wrapper class for colors 67

kaaengine

Color.a
Returns blue value

Class methods:

classmethod Color.from_int(r=0, g=0, b=0, a=0)
Allows to construct a Color instance from integer parameters: r, g, b and a must be integers between 0 and
255

2.3 easings — Easing effects for transitions

2.3.1 Easing reference

class easings.Easing
Enum type used for referencing easing types to work with transitions. Read more about Transitions here. It has
the following values:

• Easing.none - default easing, representing a linear progress

• Easing.back_in

• Easing.back_in_out

• Easing.back_out

• Easing.bounce_in

• Easing.bounce_in_out

• Easing.bounce_out

• Easing.circular_in

• Easing.circular_in_out

• Easing.circular_out

• Easing.cubic_in

• Easing.cubic_in_out

• Easing.cubic_out

• Easing.elastic_in

• Easing.elastic_in_out

• Easing.elastic_out

• Easing.exponential_in

• Easing.exponential_in_out

• Easing.exponential_out

• Easing.quadratic_in

• Easing.quadratic_in_out

• Easing.quadratic_out

• Easing.quartic_in

• Easing.quartic_in_out

68 Chapter 2. Kaa engine Reference

kaaengine

• Easing.quartic_out

• Easing.quintic_in

• Easing.quintic_in_out

• Easing.quintic_out

• Easing.sine_in

• Easing.sine_in_out

• Easing.sine_out

2.3.2 ease() reference

easings.ease(easing, t)
Calculates the rate of change at time t for specific easing. The t parameter should be a float with a value between
0 (start of transition) and 1 (end of transition). The easing must be an easings.Easing value.

Returned value is a float.

2.3. easings — Easing effects for transitions 69

kaaengine

print("Half into transition time, the rate value with the default easing is {}".
→˓format(ease(Easing.none, 0.5)))
print("Half into transition time, the rate value with exponential easing is {}".
→˓format(ease(Easing.exponential_in, 0.5)))

2.3.3 ease_between() reference

easings.ease_between(easing, t, a, b)
Calculates the actual value transitioning from a to b at time t using given easing.

The a and b parameters must be either floats of vectors (geometry.Vector).

The t must be a float between 0 (start of transition) and 1 (end of transition)

The easing must be an easings.Easing value.

a = 50
b = 100
t = 0.5
easing = Easing.none
result = ease_between(a, b, t, easing)
print('At time t={}, the value transitioning from a={} to b={} with easing {}
→˓will be {}'.format(t, a, b, str(easing), result))
At time t=0.5, the value transitioning from a=50.0 to b=100.0 with easing
→˓Easing.none will be 75.0

2.4 engine — Engine and Scenes: The core of your game

2.4.1 Engine reference

Constructor:

class engine.Engine(virtual_resolution, virtual_resolution_mode=VirtualResolutionMode.adaptive_stretch,
show_window=True)

Engine instance is the first object you need to create to run the game.

Parameters:

• virtual_resolution - required. A geometry.Vector with width/height of the virtual resolution (see
virtual_resolution for more information).

• virtual_resolution_mode - a VirtualResolutionMode value.

• show_window - if you pass False, the engine will start with a hidden window. Useful if you want to run
kaa related stuff in a non-windowed environment, for example, when you want to run unit tests from a
terminal window. Or when you want to start the game with a hidden window and show it manually later.

Game’s ‘entry point’ is the Engine.run() method which takes in a Scene instance as a required parameter.
Calling run will make the kaa engine run the scene, i.e. call its Scene.update() method in a loop.

A typical “Hello World” kaa game (showing just an empty window) would look like the following:

from kaa.engine import Engine, Scene
from kaa.geometry import Vector

class MyScene(Scene):
(continues on next page)

70 Chapter 2. Kaa engine Reference

kaaengine

(continued from previous page)

def update(self, dt):
pass

with Engine(virtual_resolution=Vector(800, 600)) as engine:
scene = MyScene()
engine.run(scene)

To run the game in a fullscreen window, using 800x600 virtual resolution:

with Engine(virtual_resolution=Vector(800, 600)) as engine:
scene = MyScene()
engine.window.fullscreen = True
engine.run(scene)

To run the game in a 1200x1000 window, using 800x600 resolution, without stretching the drawable area to fit
the whole window size, giving window a title, and setting the clear color to green:

from kaa.engine import Engine, Scene, VirtualResolutionMode
from kaa.colors import Color
from kaa.geometry import Vector

with Engine(virtual_resolution=Vector(800, 600),
virtual_resolution_mode=VirtualResolutionMode.no_stretch) as engine:

scene = MyScene()
engine.window.size = Vector(1200, 1000)
engine.window.fullscreen = False
engine.window.title = "Welcome to the wonderful world of kaa engine"
scene.clear_color = Color(0, 1.0, 0, 1) # RGBA format
engine.run(scene)

Be sure to check out the virtual_resolution documentation for more information on what virtual resolution
concept is and how it is different than window size.

Instance properties:

Engine.current_scene
Read only. Returns an active Scene. More complex games will have multiple scenes but the engine can run
only one scene at a time. Only the active scene will have its update() method called by the engine.

Use Engine.change_scene() method to change an active scene.

Engine.virtual_resolution
Gets or sets the virtual resolution size. Expects geometry.Vector as a value, representing resolution’s width
and height.

When writing a game you would like to have a consistent way of referencing coordinates, independent from the
display resolution the game is running on. So for example when you draw some image on position (100, 200)
you would like it to always be the same (100, 200) position on the 1366x768 laptop screen, 1920x1060 full HD
monitor or any other of dozens display resolutions out there.

That’s where virtual resolution concept comes in. You declare a virtual resolution for your game just once, when
initializing the engine, and the engine will always use exactly this resolution when you draw stuff in your game.
If you run the game in a window larger than the declared virtual resolution, the engine will stretch the game’s
actual draw area. If you run it in a window smaller than declared virtual resolution, the engine will shrink it.

There are different policies available for stretching and shrinking the area. You can control it by setting the
virtual_resolution_mode property.

2.4. engine — Engine and Scenes: The core of your game 71

https://en.wikipedia.org/wiki/Display_resolution#/media/File:Vector_Video_Standards8.svg

kaaengine

Although it is possible to change the virtual resolution (even as the game is running), we don’t recommend it
unless you have a good reason to do that.

Engine.virtual_resolution_mode
Gets or sets virtual resolution mode. See VirtualResolutionMode documentation for a list of possible
values.

It is possible to change the virtual resolution mode, even as the game is running.

from kaa.engine import get_engine, VirtualResolutionMode

engine = get_engine()
engine.virtual_resolution_mode = VirtualResolutionMode.aggresive_stretch

Engine.window
A get accessor to the Window object which exposes game window properties such as window size, title, or
fullscreen flag and allows to change them.

Note: It is perfectly safe to change the window size or fullscreen mode, even in the game runtime.

Check out the Window documentation for a list of all available properties and methods.

from kaa.engine import get_engine
from kaa.geometry import Vector

engine = get_engine()
engine.window.title = "Hello world"
engine.window.fullscreen = False
engine.window.size = Vector(1920, 1080)

Engine.audio
A get accessor to the AudioManager object which exposes global audio properties such as the master volume
for sound effects or music. See the AudioManager documentation for a list of all available properties.

from kaa.engine import get_engine

engine = get_engine()
engine.audio.master_sound_volume = 0.5 # 50% of the max volume (sfx)
engine.audio.master_music_volume = 0.75 # 75% of the max volume (music)
engine.audio.mixing_channels = 100 # set number of max sounds we'll be able to
→˓play simultaneously

Instance methods:

Engine.change_scene(new_scene)
Use this method to change the active scene. Only one scene can be active at a time.

Active scene is being rendered by the renedrer and has its update() method called.

A non-avtive scene remains ‘frozen’: it does not lose state (no objects are ever removed by deactivating a Scene)
but its update() method is not being called and nothing is being rendered.

Example of having two scenes and toggling between them:

from kaa.input import Keycode
from kaa.engine import Engine, Scene
from kaa.colors import Color
from kaa.geometry import Vector

(continues on next page)

72 Chapter 2. Kaa engine Reference

kaaengine

(continued from previous page)

from kaa.fonts import TextNode, Font
import os

SCENES = {}

class TitleScreenScene(Scene):

def __init__(self, font):
super().__init__()
self.root.add_child(TextNode(font=font, font_size=30, position=Vector(500,

→˓ 500),
text="This is the title screen, press enter

→˓to start the game.",
color=Color(1, 1, 0, 1)))

def update(self, dt):
for event in self.input.events():

if event.keyboard_key:
if event.keyboard_key.is_key_down and event.keyboard_key.key ==

→˓Keycode.return_:
self.engine.change_scene(SCENES['gameplay_scene'])

class GameplayScene(Scene):

def __init__(self, font):
super().__init__()
self.label = TextNode(font=font, font_size=30, position=Vector(1000, 500),

→˓ color=Color(1, 0, 0, 1),
text="This is gameplay, press q to get back to the

→˓title screen. I'm rotating BTW.")
self.root.add_child(self.label)

def update(self, dt):
for event in self.input.events():

if event.keyboard_key:
if event.keyboard_key.is_key_down and event.keyboard_key.key ==

→˓Keycode.q:
self.engine.change_scene(SCENES['title_screen_scene'])

self.label.rotation_degrees += dt * 20

with Engine(virtual_resolution=Vector(1920, 1080)) as engine:
font = Font(os.path.join('assets', 'fonts', 'DejaVuSans.ttf')) # MUST create

→˓all kaa objects inside engine context!
SCENES['title_screen_scene'] = TitleScreenScene(font)
SCENES['gameplay_scene'] = GameplayScene(font)
engine.window.fullscreen = True
engine.run(SCENES['title_screen_scene'])

Engine.get_displays()
Returns a list of all available Display objects (monitors) present in the system. See the Display documen-
tation for a full list of display properties avaiable.

from kaa.engine import get_engine

(continues on next page)

2.4. engine — Engine and Scenes: The core of your game 73

kaaengine

(continued from previous page)

engine = get_engine()
for display in engine.get_displays():

print(display)

Engine.quit()
Destroys the engine and closes the window. Call this method when the player wants to leave the game or to
handle the quit event received from the system on closing the window (e.g. by ALT+F4 or pressing “X”)

from kaa.engine import Scene
from kaa.input import Keycode

class MyScene(Scene):

def update(self, dt):

for event in self.input.events():
if event.system and event.system.quit:

handle the system event of pressing "X" or ALT+F4 to close the
→˓window:

self.engine.quit()

if event.keyboard_key and event.keyboard_key.key == Keycode.q:
quit the game on pressing the Q key
self.engine.quit()

Engine.run(scene)
Starts running a scene instance, by calling its update method in a loop. You’ll need to call this method just
once, to run the first scene of your game. To change between scenes use the Engine.change_scene()
method.

Engine.stop()
Stops the engine. You won’t need to call it if you use context manager, i.e. initialize the Engine using the with
statement.

Engine.get_fps()
Returns current frames per second rate. It is an average from the last 10 frames.

2.4.2 Scene reference

Constructor:

class engine.Scene
The Scene instance is a place where all your in-game objects will live. You should write your own scene class
by inheriting from this type. Scene main features are:

• Each Scene must define a Scene.update() method which will be called by the engine on every frame.

• Use the nodes.Node.add_child()method on Scene’s root node to add objects (Nodes) to the Scene.
Read more about Nodes.

• Use the input property to access input.InputManager which:

– exposes a lot of methods to actively check for input from mouse, keyboard, controllers etc.

– includes an events list which occurred during the current frame (mouse, keyboard, controllers, music,
etc.)

• Use the camera property to control the camera

74 Chapter 2. Kaa engine Reference

kaaengine

• Use the views property to access views. Read more how View objects work.

The Scene constructor does not take any parameters. As stated above, you should never instantiate a Scene
directly but write your own scene class that inherit from it. Use the Scene’s constructor to add initial objects to
the scene

from kaa.engine import Scene

def MyScene(Scene):

def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
initialize the scene here, e.g. add some initial objects to the scene...

def update(self, dt):
pass

with Engine(virtual_resolution=Vector(800, 600)) as engine:
scene = MyScene()
engine.run(scene)

Instance properties:

Scene.camera
A get accessor to the Camera object of the default view (read more about views here). Camera object includes
properties and methods for manipulating the camera (moving, rotating, etc.). See the Camera documentation
for a full list of available properties and methods.

from kaa.engine import Scene
from kaa.geometry import Vector

def MyScene(Scene):

def __init__(self):
self.camera.position = Vector(-200, 400)
self.camera.rotation_degrees = 45
self.camera.scale = Vector(2.0, 2.0)

Scene.engine
Returns Engine instance.

Scene.views
Allows for accessing views by index. Each Scene has 32 views. Check out View reference for more information
on how views work.

def MyScene(Scene):

def how_to_access_views(self)
print(len(self.views)) # 32 views
the_default_view = self.views[0] # view with 0 index is the default view.
some_view = self.views[17]

Scene.input
A get accessor to the input.InputManager object which offers methods and properties to actively check
for input from mouse, keyboard, controllers etc. It also allows to consume events published by those devices,
by the system or by the kaa engine itself. Check out the input.InputManager documentation for a full list
of available features.

2.4. engine — Engine and Scenes: The core of your game 75

kaaengine

from kaa.engine import Scene
from kaa.geometry import Vector
from kaa.input import Keycode, MouseButton

def MyScene(Scene):

def update(self, dt):

actively check if a "W" key is pressed
if self.input.is_pressed(Keycode.w):

.... do something
consume all events that occurred during the frame:
for event in self.input.events():

.... do something

Scene.root
All objects which you will add to the scene (or remove from the scene) are called Nodes. Nodes can form a
tree-like structure, that is: a Node can have many child Nodes, and exacly one parent Node. Each Scene has a
“root” node, accessible by this property.

Refer to the nodes documentation for more information on how the nodes work.

from kaa.engine import Scene
from kaa.nodes import Node
from kaa.sprites import Sprite

def MyScene(Scene):

def __init__(self):
super().__init__()
self.arrow_sprite = Sprite(os.path.join('assets', 'gfx', 'arrow.png'))
self.arrow_node = Node(sprite=self.arrow_sprite, position=Vector(200,

→˓200))
self.root.add_child(self.arrow_node)

Scene.clear_color

Gets or sets the clear color (colors.Color) for the default view. Check out View documentation for more infor-
mation on views.

An example of 800x600 viewport, colored in green, running in the 1200x1000 window using no_stretch mode:

from kaa.engine import Engine, Scene, VirtualResolutionMode
from kaa.colors import Color
from kaa.geometry import Vector

class MyScene(Scene):

def update(self, dt):
pass

with Engine(virtual_resolution=Vector(800, 600),
virtual_resolution_mode=VirtualResolutionMode.no_stretch) as

→˓engine:

scene = MyScene()
scene.clear_color = Color(0, 1, 0, 1) # RGBA format

(continues on next page)

76 Chapter 2. Kaa engine Reference

kaaengine

(continued from previous page)

engine.window.size = Vector(1200, 1000)
engine.run(scene)

Scene.spatial_index
A get accessor to the SpatialIndexManager, which offers methods to query for nodes at specific position
or inside a specific geometry.BoundingBox

Scene.time_scale
Gets or sets a time scale, as float. Kaa engine will apply this scale everywhere (in physics, timers, transitions
and so on). Basically it allows you to speed up or slow down the time scale of your whole game.

Instance methods:

Scene.update(dt)
An update method is called every frame. The dt parameter is a time elapsed since previous update call, in
seconds. Most of your game logic will live inside the update method.

Note: If you change the Scene.time_scale value the dt value received by the update() will be adjusted
accordingly.

from kaa.engine import Scene
from kaa.nodes import Node
from kaa.sprites import Sprite

def MyScene(Scene):

def __init__(self):
super().__init__()
self.arrow_sprite = Sprite(os.path.join('assets', 'gfx', 'arrow.png'))
self.arrow_node = Node(sprite=self.arrow_sprite, position=Vector(200,

→˓200))
self.root.add_child(self.arrow_node)

def update(self, dt)
self.arrow_node.rotation_degrees += 20 * dt # rotate the arrow 20 degrees

→˓per second, clockwise

Scene.on_enter()
This method is called when the scene is activated (either by Engine.run(), or by Engine.
change_scene()) giving you opportunity to write some logic each time that happens.

Scene.on_exit()
Same as Scene.on_enter() but is called just before the scene gets deactivated via the Engine.
change_scene().

2.4.3 SpatialIndexManager reference

class engine.SpatialIndexManager
Input manager object can be accessed via Scene.spatial_index property. It has two main features:

• Find Nodes on the Scene, at given position (x,y)

• Find Nodes on the Scene inside a specific geometry.BoundingBox.

Note that only nodes whose indexable property is set to True will be queried.

2.4. engine — Engine and Scenes: The core of your game 77

kaaengine

Instance methods:

SpatialIndexManager.query_bounding_box(bounding_box, include_shapeless=True)
Returns a list of Nodes inside specified bounding box. It also includes those which only intersect the bounding
box. The bounding_box must be an instance of geometry.BoundingBox. Returned nodes are unordered.

The include_shapeless param determines whether the query will also include nodes which do not have a
shape.

Note: Only the nodes with indexable property set to True will be queried. The indexable property is True by
default.

from kaa.geometry import BoundingBox

nodes = scene.spatial_index.query_bounding_box(BoundingBox(100, 150, 500, 600))
print("found {} nodes inside or intersecting that bounding box!".
→˓format(len(nodes)))

SpatialIndexManager.query_point(point)
Returns a list of Nodes that contain the specified point. The point must be a geometry.Vector. Returned nodes
are unordered.

Note: Only the nodes with indexable property set to True will be queried. The indexable property is True by
default.

from kaa.geometry import Vector

nodes = scene.spatial_index.query_point(Vector(100, 150))
print("found {} nodes which contain that point!".format(len(nodes)))

2.4.4 View reference

class engine.View
Views allow you to fine-tune how the scene is being redenred on the screen. Each scene has 32 views (indexed
-16 to 15) which you can configure independently. You can configure a view to be displayed at given position
on the screen, give it specific width/height and then use the view’s camera to show the scene normally inside
the view’s box. Important caveat: the view will render only Nodes which were explicitly assigned to it.. It
means you need to use the views property on a Node to explicitly assign a Node to a specific view.

Each view’s index determines its z_index property. It is used to manage the ‘layering’ of all 32 views. In other
words all nodes assigned to view with a higher index will be rendered in front of any node assigned to a view
with a lower index, regardless of node’s z_index values. Node’s z_index values are used to manage ‘layering’
of nodes within a view.

An example below configures a 400x400 view at position (100, 200) and inside that box it displays a fragment
of the scene using view’s camera:

def MyScene(Scene):

def see_what_views_have_to_offer(self):
some_view = self.views[1] # Note: there are 32 views available
some_view.origin = Vector(100, 200) # The view will be positioned at

→˓(100, 200), in relation to display
(continues on next page)

78 Chapter 2. Kaa engine Reference

kaaengine

(continued from previous page)

some_view.dimensions = Vector(400, 400) # view 'box' size will be 400x400
The view has its own camera which you can manage normally to show the

→˓scene inside the box:
some_view.camera.position = Vector(300, 500)
some_view.camera.scale = Vector(3, 3)
some_view.clear_color = Color(1, 0, 0, 1) # we can set the clear color

→˓for the view as well

we may add nodes to views independently.
self.root.add_child(Node()) # will be rendered in the default view only

→˓(0)
self.root.add_child(Node(views={0, 1, 2, 14})) # the node will be

→˓rendered in views 0, 1, 2, 14

Few typical use cases for views:

• Build a UI layer (panels, buttons, menus etc.) - add all those nodes to a separate view

• Split screen feature - render scene in multiple views each covering part of the screen, cameras focused on
different players

• Makes parallax scrolling effect easier to implement - render each layer using separate view.

Instance properties:

View.origin
Gets or sets the origin of a view, as geometry.Vector. The origin points to the top-left position of the view
on the screen.

View.dimensions
Gets or sets the dimensions of a view, as geometry.Vector, x being width and y being height.

View.clear_color
Gets or sets a clear color for a view as colors.Color. Default color is black.

View.camera
Returns a Camera associated with this view.

View.z_index
Read only. Gets the z_index of a view, that is basically view index (can be a value between -15 and 16)

2.4.5 Window reference

class engine.Window

Window object exposes properties and methods for the game window. Changing the fullscreen flag will make the
game run in a fullscreen or windowed mode. If you run the game in the windowed mode, you can resize or reposition
the window using properties such as position, size or methods such as Window.center().

Instance properties:

Window.fullscreen

Gets or sets the fullscreen mode. Expects bool value. Setting fullscreen to True will remove the window’s borders
and title bar and stretch it to fit the entire screen.

It is possible to toggle between fullscreen and windowed mode as the game is running.

2.4. engine — Engine and Scenes: The core of your game 79

kaaengine

from kaa.engine import get_engine

engine = get_engine()
engine.window.fullscreen = True

Window.size

Gets or sets the size of the window, using geometry.Vector.

Note that if you set the fullscreen to True the window will not only resize automatically to fit the entire screen
but will also drop its borders and the top bar. Resizing the window programatically makes most sense if the game
already runs in the windowed mode (with window.fullscreen=False).

from kaa.engine import get_engine
from kaa.geometry import Vector

engine = get_engine()
engine.window.size = Vector(500, 300) # sets the window size to 500x300

Window.position

Gets or sets the position of the window on the screen, using geometry.Vector. Passing Vector(0,0) will align the
window with the top left corner of the screen.

Just like with the size attribute, changing window position makes sense only if using windowed mode (window.
fullscreen=False).

from kaa.engine import get_engine
from kaa.geometry import Vector

engine = get_engine()
engine.window.position = Vector(0, 0)

Window.title

Gets or sets the title of the window.

from kaa.engine import get_engine

engine = get_engine()
engine.window.title = "Git Gud or Get Rekt!"

Instance methods:

Window.center()
Positions the window in the center of the screen. Makes most sense if using windowed mode (window.
fullscreen=False)

Window.maximize()
Maximizes the window. Makes most sense if using windowed mode (window.fullscreen=False)

Window.minimize()
Minimizes the window. Makes most sense if using windowed mode (window.fullscreen=False)

Window.show()
Shows the window.

Window.hide()
Hides the window.

80 Chapter 2. Kaa engine Reference

kaaengine

Window.restore()
Restores the window from the maximized/minimized state to the default state. Makes most sense if using
windowed mode (window.fullscreen=False)

2.4.6 AudioManager reference

class engine.AudioManager

Audio Manager gives access to global audio settings, such as master sound volume. Audio Manager can be accessed
via the Engine.audio property on the Engine instance.

Instance properties:

AudioManager.master_volume

Gets or sets the master volume level for sounds and music, using value between 0 (0% volume) and 1 (100% volume).

Master volume affects sound effects and music tracks volume played with audio.Sound.play() and audio.
Music.play() respectively.

from kaa.engine import get_engine

somwhere inside Scene....
self.engine.master_volume = 1.0 # sets master volume to 100%
my_sound.play(volume=0.7) # plays a sound with 70% volume
self.engine.master_volume = 0.1 # sets master volume to 10%
my_sound.play(volume=0.5) # pays a sound with 5% volume (50% sound volume * 10%
→˓master volume = 5% final volume)

AudioManager.master_sound_volume

Gets or sets the default volume level for sound effects. Using value between 0 (0% volume) and 1 (100% volume).
Master sound volume level affects sound effects volume played with audio.Sound.play()

from kaa.engine import get_engine

somwhere inside Scene class
self.engine.master_sound_volume = 1.0 # sets master sfx volume to 100%
my_sound.play(volume=0.7) # plays a sound with 70% volume
self.engine.master_volume = 0.1 # sets master volume to 10%
my_sound.play(volume=0.5) # pays a sound with 5% volume (50% sound volume * 10%
→˓master sfx volume = 5% final volume)

AudioManager.master_music_volume

Gets or sets the default master volume level for music. Using value between 0 (0% volume) and 1 (100% volume).
Master music volume level affects music tracks volume played with audio.Music.play().

from kaa.engine import get_engine

somwhere inside Scene....
self.engine.master_music_volume = 1.0 # sets master music volume to 100%
my_music.play(volume=0.7) # plays a music track with 70% volume
self.engine.master_music_volume = 0.1 # sets master music volume to 10%
my_music.play(volume=0.5) # pays music track with 5% volume (50% sound volume * 10%
→˓master music volume = 5% final volume)

AudioManager.mixing_channels

2.4. engine — Engine and Scenes: The core of your game 81

kaaengine

Gets or sets the maximum number of sound effects that can be played simultaneously with audio.Sound.play().
Note that you can never play more than one music track simultaneously.

2.4.7 Display reference

class engine.Display

Stores display device properties. A list of Display objects can be obtained by calling Engine.get_displays().

Instance Properties:

Display.index

Read only. Returns display index (integer).

Display.name

Read only. Returns display name.

Display.position

Read only. Returns display position as geometry.Vector.

Display.size

Read only. Returns display resolution as geometry.Vector.

2.4.8 Camera reference

class engine.Camera

A camera projects the image of the 2D scene onto the screen. You can move, rotate or scale the camera by setting its
properties.

To get a Camera instance, either

1) use the Scene.camera property which returns a default camera, or

2) Access a specific view on a Scene via Scene.views and then access the camera property via View.camera

Note: There isn’t a “global” camera - each View has its own camera allowing to display fragments of scene in
different viewports.

Instance properties:

Camera.position
Gets or sets the camera position, using geometry.Vector.

from kaa.geometry import Vector

somewhere inside Scene:
self.camera.position = Vector(123.45, 678.9)

Camera.rotation
Gets or sets the camera rotation, in radians

82 Chapter 2. Kaa engine Reference

kaaengine

from kaa.geometry import Vector
import math

somewhere inside Scene:
self.camera.rotation = math.pi / 4

Camera.rotation_degrees
Gets or sets the camera rotation, in degrees

from kaa.geometry import Vector
import math

somewhere inside Scene:
self.camera.rotation_degrees = 180 # show the scene upside down

Camera.scale
Gets or sets the scale for the camera (using geometry.Vector). In other words, manipulating this property allows
for a zoom-in / zoom-out effects. Each axis (x and y) can be manipulated independently, so if you zoom in on
X axis and zoom out on Y the image projected by the camera will appear stretched.

from kaa.geometry import Vector
import math

somewhere inside Scene:
self.camera.scale= Vector(1.5, 1.5) # 50% zoom-in

Camera.visible_area_bounding_box
Returns camera’s visible area as geometry.BoundingBox.

Instance methods:

Camera.unproject_position(position)

Takes a position (geometry.Vector), applies all camera transformations (position, scale, rotation) to that position and
returns the result. Useful when you want to convert position in the screen frame reference (as returned by MouseEvent-
Button.position) or when you have applied some transformations to the camera and want to know the actual position
of given point (e.g. mouse position)

Full example:

import os
from kaa.engine import Engine, Scene
from kaa.geometry import Vector
from kaa.input import MouseButton
from kaa.fonts import TextNode, Font

class MyScene(Scene):

def __init__(self, font):
self.root.add_child(TextNode(font=font, font_size=30,

→˓position=Vector(400, 300), z_index=10,
text="This is a static text, it never rotates itself. Click to

→˓rotate the camera 45 degrees"))

def update(self, dt):

for event in self.input.events():

(continues on next page)

2.4. engine — Engine and Scenes: The core of your game 83

kaaengine

(continued from previous page)

if event.mouse_button and event.mouse_button.is_button_down and
→˓event.mouse_button.button == MouseButton.left:

position = self.input.mouse.get_position()
unproj_position = self.camera.unproject_position(position)
print(f'Before the camera rotation: Mouse position {position}

→˓ -> unproject -> {unproj_position}')
let's now rotate the camera 45 degrees and check the result
self.camera.rotation_degrees += 45
unproj_position = self.camera.unproject_position(position)
print(f'After camera rotation: Mouse position {position} ->

→˓unproject -> {unproj_position}')

with Engine(virtual_resolution=Vector(800,600)) as engine:
font = Font(os.path.join('assets', 'fonts', 'DejaVuSans.ttf'))
engine.run(MyScene(font))

2.4.9 VirtualResolutionMode reference

class engine.VirtualResolutionMode

VirtualResolutionMode is an enum type which you can pass when creating the engine.Engine instance.

It tells the engine how it should stretch the virtual resolution (set via the virtual_resolution property).

• VirtualResolutionMode.adaptive_stretch - the default mode. The drawable area will adapt to
window size, maintaining aspect ratio and leaving black padded areas outside

• VirtualResolutionMode.aggresive_stretch - the drawable area will always fill the entire window
- aspect ratio may not be maintained while stretching.

• VirtualResolutionMode.no_stretch - no stretching applied, leaving black padded areas if window
is larger than virtual resolution size

2.4.10 get_engine() reference

engine.get_engine()

This function provides a convenient way of getting an engine instance from anywhere in your code.

from kaa.engine import get_engine

engine = get_engine()

2.5 fonts — Drawing text on screen

2.5.1 Font reference

Constructor:

class fonts.Font(font_filepath)
Font object is used to load a font from a file. Font objects are immutable.

84 Chapter 2. Kaa engine Reference

kaaengine

The Font constructor accepts just one parameter: font_filepath which should be a string with a path to a
font file.

Kaa engine currently supports the following font file formats:

• ttf

import os
from kaa.fonts import Font

.... somewhere inside a Scene ...
font = Font(os.path.join('assets','fonts','DejaVuSans.ttf'))

2.5.2 TextNode reference

Constructor:

class fonts.TextNode(font, text="", font_size=28.0, line_width=float("Inf"), interline_spacing=1.0,
first_line_indent=0, position=Vector(0, 0), rotation=0, scale=Vector(1,
1), z_index=0, color=Color(0, 0, 0, 0), sprite=None, shape=None, ori-
gin_alignment=Alignment.center, lifetime=None, transition=None, visi-
ble=True)

TextNode extends the nodes.Node class to give you ability to comfortably work with text.

In addition to all nodes.Node params the TextNode constructor accepts the following ones:

• font - a Font instance

• font_size - a number

• line_width - a number

• interline_spacing - a number

• first_line_indent - a number

class MyScene(Scene):

def __init__(self):
font = Font(os.path.join('assets','fonts','DejaVuSans.ttf'))

a simple label
simple_text = TextNode(font=font, text="Hello world", position=Vector(100,

→˓ 100), font_size=30,
origin_alignmnet=Alignment.left, color=Color(1,1,0,

→˓1), z_index=100)

a paragraph with a width of 300 and first line indent of 50. Words will
→˓wrap automatically

wrapped_text = TextNode(font=font,
text="Lorem ipsum dolor sit amet, consectetur

→˓adipiscing elit. Ut dignissim, tellus "
"sit amet ultrices facilisis, purus mi

→˓malesuada ante, sit amet ultricies erat "
"mauris a turpis. Integer a elit sed mi

→˓mattis tincidunt. Pellentesque tristique "
"semper cursus. Maecenas suscipit, ex quis

→˓condimentum consectetur, quam sapien "
"placerat ex, eu aliquam est est condimentum

→˓mauris. ",
(continues on next page)

2.5. fonts — Drawing text on screen 85

kaaengine

(continued from previous page)

position=Vector(500, 500), font_size=30,
origin_alignmnet=Alignment.center, color=Color(1,

→˓0, 0, 1), line_width=300,
first_line_indent=50, z_index=101)

self.root.add_child(simple_text)
self.root.add_child(wrapped_text)

Instance properties

TextNode.text
Gets or sets a text to be rendered. A string.

Note: Updating text is relatively heavy operation in terms of performance so you should avoid doing it on each
frame on a large number of nodes.

TextNode.font_size
Gets or sets the font size to be used when rendering the text. A number. Default is 28.

TextNode.line_width
Gets or sets the paragraph width. A number. Words will wrap automatically to fit the desired width. Default is
infinite width.

TextNode.interline_spacing
Gets or sets the spacing between the lines of text in case of multiline texts.

TextNode.first_line_indent
Gets or sets the first line indentation in case of multiline texts.

2.6 geometry — wrapper classes for vectors, segments, polygons
etc.

2.6.1 Vector reference

Constructor:

class geometry.Vector(x, y)
Vector instance represents an Euclidean vector. It stores a pair od 2D corrdinates (x, y).

Vectors are immutable.

Vectors are used for the following purposes:

• storing an actual vector pointing from (0, 0) to (x, y), for example nodes.BodyNode.velocity

• storing a 2D point, for example nodes.Node.position

• storing a width/height of a rectangular shape, such as a screen resolution. For example engine.
Engine.virtual_resolution

Vector constructor accepts two float numbers: x and y.

Available operators:

• Adding two vectors: Vector(1,1) + Vector(2,2)

• Substracting two vectors: Vector(1,1) - Vector(2,2)

86 Chapter 2. Kaa engine Reference

kaaengine

• Multiplying vector by a scalar: Vector(1,1) * 123

• Dividing vector by a scalar: Vector(1,1) / 123

Class methods:

classmethod Vector.from_angle(angle)
Creates a new unit Vector (i.e. length 1 vector) from angle, in radians.

import math
from kaa.geometry import Vector

v = Vector.from_angle(math.pi / 4)
print(v) # V[0.7071067811865476, 0.7071067811865475]
print(v.length()) # 1.0

classmethod Vector.from_angle_degrees(degrees)
Creates a new unit Vector (i.e. length 1 vector) from angle, in degrees.

import math
from kaa.geometry import Vector

v = Vector.from_angle_degrees(90) # 90 degrees is pointing up, 180, pointing left,
→˓ 270 pointing down etc.
print(v) # V[0.0, 1.0]
print(v.length()) # 1.0

Instance Properties (read only):

Vector.x
Gets the x value of a vector

Vector.y
Gets the y value of a vector

Instance Methods:

Vector.is_zero()
Returns True if vector is a zero vector

from kaa.geometry import Vector

Vector(0, 0).is_zero() # True
Vector(0.1, 0).is_zero() # False

Vector.rotate_angle(angle)
Returns a new vector, rotated by given angle, in radians.

from kaa.geometry import Vector
import math

print(Vector(10, 0)) # V[10, 0]
print(Vector(10, 0).rotate_angle(math.pi)) # V[-10, 0]

Vector.rotate_angle_degrees(degrees)
Returns a new vector, rotated by given angle, in degrees.

from kaa.geometry import Vector
import math

(continues on next page)

2.6. geometry — wrapper classes for vectors, segments, polygons etc. 87

kaaengine

(continued from previous page)

print(Vector(10, 0)) # V[10, 0]
print(Vector(10, 0).rotate_angle_degrees(180)) # V[-10, 0]

Vector.to_angle()
Returns vector’s angle, in radians.

Vector.to_angle_degrees()
Returns vector’s angle, in degrees.

Vector.dot(other_vector)
Returns dot product of two vectors. other_vector parameter must be geometry.Vector

Vector.distance(other_vector)
Returns a distance from (x,y) to (other_vector.x, other_vector.y), in other words: distance between two points.
other_vector parameter must be geometry.Vector

Vector.angle_between(other_vector)
Returns angle between this vector and other_vector, in radians. The other_vector parameter must be
geometry.Vector

Vector.angle_between_degrees(other_vector)
Returns angle between this vector and other_vector, in degrees. The other_vector parameter must be
geometry.Vector

Vector.normalize()
Returns a new vector, normalized (i.e. unit vector)

Vector.length()
Returns vector’s length.

2.6.2 Segment reference

Constructor:

class geometry.Segment(vector_a, vector_b)
Segment instance represents a segment between two points, a and b.

Segments are immutable.

vector_a and vector_b params are geometry.Vector instances indicating both ends of a Segment

Instance properties:

Segment.point_a
Read only. Returns point A of the segment

Segment.point_b
Read only. Returns point B of the segment

Segment.bounding_box
Read only. Returns segment’s bounding box as geometry.BoundingBox.

Instance methods:

Segment.transform(transformation)
Applies given transformation to this Segment and returns a new Segment.

The transformation parameter must be a Transformation instance.

88 Chapter 2. Kaa engine Reference

kaaengine

2.6.3 Circle reference

Constructor:

class geometry.Circle(radius, center=Vector(0, 0))
Circle instance represents a circualar shape, with a center and a radius. Circles are used e.g. for creating
hitboxes.

Circles are immutable.

The center parameter must be geometry.Vector, radius is a number.

Instance properties:

Circle.radius
Read only. Returns circle radius.

Circle.center
Read only. Returns circle center.

Circle.bounding_box
Read only. Returns circle bounding box as geometry.BoundingBox.

Instance methods:

Circle.transform(transformation)
Applies given transformation to this Circle and returns a new Circle.

The transformation parameter must be a Transformation instance.

2.6.4 Polygon reference

Constructor:

class geometry.Polygon(points)
Polygon instance represents a custom shape. Polygons are used e.g. for creating hitboxes.

Polygons are immutable.

The points parameter must be a list of geometry.Vector instances.

If you don’t close the polygon (the last point in the list is not identical with the first one) kaa will do that for
you.

The polygon must be convex. Kaa engine will throw an exception if you try to create a non-convex polygon.
You may use classify_polygon() function to check if a list of points will form a convex polygon or not.

from kaa.geometry import Polygon

polygon = Polygon([Vector(-10, -10), Vector(10, 30), Vector(0, 40)]) # a
→˓triangular-shaped polygon

Class methods:

classmethod Polygon.from_box(vector)
Creates a rectangular-shaped Polygon whose central point is at (0, 0) and width and height are passed as vec-
tor.x and vector.y respectively. A useful shorthand function for creating a rectangular shape for a physics.
HitboxNode.

2.6. geometry — wrapper classes for vectors, segments, polygons etc. 89

https://en.wikipedia.org/wiki/Convex_polygon

kaaengine

from kaa.geometry import Polygon, Vector

poly = Polygon.from_box(Vector(10, 8)) # creates a rectangular polygon [V(-5, -
→˓4), V(5, -4), V(5, 4), V(-5, 4)]

Instance properties:

Polygon.points
Read only. Returns a list of points constituting the Polygon.

Polygon.bounding_box
Read only. Returns polygon’s bounding box as geometry.BoundingBox.

Instance methods:

Polygon.transform(transformation)
Applies given transformation to this Polygon and returns a new Polygon.

The transformation parameter must be a Transformation instance.

2.6.5 Transformation reference

class geometry.Transformation
Transformation is a ‘geometrical recipe’, which can be applied to a Segment, Circle or Polygon (using
the transform() method) to change their position, rotation and scale.

Transformations cannot be applied to Nodes, although if a Node has a shape, you can apply Transformations to
that shape.

Transformation objects are immutable.

Transformation constructor does not accept any parameters and creates a ‘void’ transformation which, when
applied, does not have any effect.

To create an actual Transformation use one of the class methods: rotate(), rotate_degrees(),
scale() or translate()

from kaa.geometry import Transformation
import math

t1 = Transformation.rotate(math.pi / 2) # a 90 degrees transformation, clockwise
t2 = Transformation.rotate_degrees(-45) # a 45 degrees transformation, anti-
→˓clockwise
t3 = Transformation.scale(Vector(2,2)) # scale change transformation (enlarge
→˓twice)
t4 = Transformation.translate(Vector(10, 0)) # position change transformation
→˓(10 units to the right)

You can chain transformations by applying the | operator, which results in a new, combined transformations:

combined_transformation = t1 | t2 | t3 | t4

Rotation and scaling is always relative to the origin of the Euclidean space, or in other words, relative to (0,0)
point. Therefore, a sequence of transformations in a chain is important. Consider the following two transforma-
tions:

rotate_than_move = t2 | t4
move_than_rotate = t4 | t2

90 Chapter 2. Kaa engine Reference

kaaengine

Contrary to intuition they won’t give the same result. When applied to a square with an edge length of 1 and
the middle in the (0,0) the first one will rotate the square 45 degrees around (0,0) and then move 10 units to the
right, while the second one will move the square 10 units to the right and then rotate, but since the center of the
square is now at (10,0) the rotation is going to “wheel” it 45 degrees around the (0,0), making the Polygon end
up in a different position. It’s illustrated in the example below:

from kaa.geometry import Vector, Polygon

square = Polygon.from_box(Vector(2,2))
print(square.points) #[V[-1.0, -1.0], V[1.0, -1.0], V[1.0, 1.0], V[-1.0, 1.0]]

just move it
square_2 = square.transform(t4)
print(square_2.points) #[V[9.0, -1.0], V[11.0, -1.0], V[11.0, 1.0], V[9.0, 1.0]]

rotate then move
square_3 = square.transform(t2 | t4)
print(square_3.points) # [V[8.585, 0.0], V[10.0, -1.414], V[11.414, 0.0], V[10.0,
→˓ 1.414]]

move then rotate
square_4 = square.transform(t4 | t2)
print(square_4.points) # [V[5.656, -7.071], V[7.071, -8.485], V[8.485, -7.071],
→˓V[7.0710, -5.656]]

Using the @ operator you can chain transformation in the matrix-style order:

rotate_then_move = t2 | t4
move_then_rotate = t2 @ t4

Finally, you can use the inverse() method on the Transformation instance to get the inversed transformation:

combined_transformation = t1 | t2 | t3 | t4
inversed_combined_transformation = combined_transformation.inverse()

Class methods:

classmethod Transformation.rotate(rotation)
Creates a new rotation Transformation. The rotation value must be a number (rotation in radians).

classmethod Transformation.rotate_degrees(rotation_degrees)
Creates a new rotation Transformation. The rotation value must be a number (rotation in degrees).

classmethod Transformation.scale(scaling_vector)
Creates a new scaling Transformation. The scaling_vector must be a Vector whose x and y represent
scaling in x and y axis respectively.

classmethod Transformation.translate(translation_vector)
Creates a new translation (position change) Transformation. The translation_vectormust be a Vector.

Instance methods:

Transformation.inverse()
Returns a new Transformation, being an inversed version of this Transformation.

Transformation.decompose()
Returns a DecomposedTransformation object which allows reading transformation’s translation, rotation
and scale.

2.6. geometry — wrapper classes for vectors, segments, polygons etc. 91

kaaengine

combined_transformation = t1 | t2 | t3 | t4
result = combined_transformation.decompose()
print(result.translation, result.rotation, result.rotation_degrees, result.scale)

2.6.6 DecomposedTransformation reference

class geometry.DecomposedTransformation

Object returned by Transformation.decompose(). It surfaces transformation properties.

Instance properties:

DecomposedTransformation.translation
Returns translation as geometry.Vector

DecomposedTransformation.rotation
Returns rotation as float, in radians

DecomposedTransformation.rotation_degrees
Returns rotation as float, in degrees

DecomposedTransformation.scale
Returns scale, as geometry.Vector

2.6.7 BoundingBox reference

class geometry.BoundingBox(min_x, min_y, max_x, max_y)
Represents a rectangular bounding box. Bounding box is always aligned with x and y axis. Bounding boxes
are being used when querying for nodes on scene. Constructor accepts four parameters, which determine the
bounding box x and y limits. You can also construct the BoundingBox using helper methods BoundingBox.
single_point() and BoundingBox.from_points()

Class methods:

classmethod BoundingBox.single_point(point)
Creates a BoundingBox from a single point. The point parameter must be a geometry.Vector represent-
ing point coordinates. A single point BoundingBox has no width/height.

classmethod BoundingBox.from_points(points)
Creates a BoundingBox from points. The points must be a list of geometry.Vector instances, represent-
ing point coordinates.

If points list is empty, it will return bounding box with NaN values.

If points list has 1 point, it behaves exactly like BoundingBox.single_point()

If points list has 2 or more points, it will return smallest box which contains all provided points.

Instance properties:

BoundingBox.min_x
Gets min_x of the bounding box.

BoundingBox.min_y
Gets min_y of the bounding box.

BoundingBox.max_x
Gets max_x of the bounding box.

92 Chapter 2. Kaa engine Reference

kaaengine

BoundingBox.max_y
Gets max_y of the bounding box.

BoundingBox.is_nan
Gets “not a number” status of the bounding box, as bool

BoundingBox.center
Gets the central point of the bounding box, as geometry.Vector.

BoundingBox.dimensions
Gets dimensions of the bounding box, as geometry.Vector, x being width and y being height.

Instance methods:

BoundingBox.merge(other_bounding_box)
Merges the bounding box with other and returns a new bounding box.

BoundingBox.contains(other)
Other can be BoundingBox or geometry.Vector. Returns True if bounding box contains other bound-
ing box or point.

BoundingBox.intersects(other_bounding_box)
Returns True if bounding box intersects with other geometry.BoundingBox, otherwise returns False

BoundingBox.intersection(other_bounding_box)
If bounding box intersects with other geometry.BoundingBox a BoundingBox is returned which spans
the intersection. If there’s no intersection, an ‘empty’ geometry.BoundingBox is returned (all properties
set to NaN)

BoundingBox.grow(vector)
Grows the bounding box by given vector (adds the vector’s x and y value to the corresponding sides of the
bounding box). The vector param must be geometry.Vector

2.6.8 Alignment reference

class geometry.Alignment

Enum type used to set Node’s origin alignment to one of the 9 positions. See nodes.Node.origin_alignment

Available values are:

• Alignment.none

• Alignment.top

• Alignment.bottom

• Alignment.left

• Alignment.right

• Alignment.top_left

• Alignment.bottom_left

• Alignment.top_right

• Alignment.bottom_right

• Alignment.center

2.6. geometry — wrapper classes for vectors, segments, polygons etc. 93

kaaengine

2.6.9 PolygonType reference

class geometry.PolygonType

Enum type returned by the classify_polygon() function. Available values:

• PolygonType.convex_cw - the list of points forms a convex polygon, the points are ordered clockwise

• PolygonType.convex_ccw - the list of points forms a convex polygon, the points are ordered counter
clockwise

• PolygonType.not_convex - the list of points forms a non-convex polygon

2.6.10 classify_polygon() reference

geometry.classify_polygon(polygon)

Accepts a list of points (list of geometry.Vector) and returns if polygon formed by those points is convex or not.
The function returns a PolygonType enum value.

from kaa.geometry import Vector, classify_polygon

print(classify_polygon([Vector(0, 0), Vector(10, 0), Vector(10, 10), Vector(0, 10)]))
→˓ # PolygonType.conwex_ccw
print(classify_polygon([Vector(0, 0), Vector(0, 10), Vector(10, 10), Vector(10, 0)]))
→˓ # PolygonType.conwex_cw
print(classify_polygon([Vector(0, 0), Vector(10, 0), Vector(2, 2), Vector(0, 10)]))
→˓# PolygonType.not_convex

2.7 input — Handling input from keyboard, mouse and controllers

2.7.1 InputManager reference

class input.InputManager

Input manager object can be accessed via Scene.input property. It has three main features:

• Gives you access to specialized managers: MouseManager, KeyboardManager, ControllerManager
and SystemManager - they offer methods to actively check for input from your code. For instance, you can
ask the KeyboardManager if given key is pressed or released.

• Gives you access to a list of events which ocurred during the frame. This is achieved by calling the
InputManager.events() method. Check out the Event documentation for a list of all available events
that kaaengine detects.

• Allows you to subscribe to specific types of events by registering your own callback function. This is done using
InputManager.register_callback() function.

And a number of other minor features.

Instance Properties:

InputManager.keyboard
A get accessor returning KeyboardManager object which exposes methods to check for keyboard input. See
the KeyboardManager documentation for a full list of available methods.

94 Chapter 2. Kaa engine Reference

kaaengine

InputManager.mouse
A get accessor returning MouseManager object which exposes methods to check for mouse input. See the
MouseManager documentation for a full list of available methods.

InputManager.controller
A get accessor returning ControllerManager object which exposes methods to check for controller input.
See the ControllerManager documentation for a full list of available methods.

InputManager.system
A get accessor returning SystemManager object which exposes methods to check for system input. See the
SystemManager documentation for a full list of available methods.

InputManager.cursor_visible
Gets or sets the visibility of the mouse cursor as bool.

Instance Methods:

InputManager.events()
Returns a list of Event objects that ocurred during the last frame. Check out the Event instance documentation
for details.

InputManager.register_callback(event_type, callback_func)
Registers a callback function which will be called when specific event type(s) occur. Allows for an easy con-
sumption of events you’re interested in.

The event_type parameter must be a specific Event subtype. You can also pass an iterable of those.
Represents event type(s) you want to subscribe to.

The callback_func must be a callable. It will get called each time given event type occurs, passing the
event as parameter.

from kaa.input import EventType

def on_text_input(event):
print('user typed this: {}'.format(event.keyboard_text.text))

def on_mouse_event(event):
print('mouse button/wheel stuff happened!')

somewhere inside a Scene instance...
self.input.register_callback(Event.keyboard_text, on_text_input)
self.input.register_callback([Event.mouse_button, Event.mouse_wheel], on_mouse_
→˓event)

Only one callback for given event type can be registered at a time. Registering another callback with the same
event type will overwrite the previous one:

from kaa.input import EventType

def on_text_input_1(event):
print('1 - user typed this: {}'.format(event.keyboard_text.text))

def on_text_input_2(event):
print('2 - user typed this: {}'.format(event.keyboard_text.text))

somewhere inside a Scene instance...
self.input.register_callback(Event.keyboard_text, on_text_input_1)
this will cancel the previous callback (i.e. on_text_input_1 will never be
→˓called):
self.input.register_callback(Event.keyboard_text, on_text_input_2)

2.7. input — Handling input from keyboard, mouse and controllers 95

kaaengine

If you pass None as callback_func, it will unregister the currently existing callback for that even type or do
nothing if no callback for that type is currently registered.

from kaa.input import EventType

def on_text_input(event):
print('user typed this: {}'.format(event.keyboard_text.text))

somewhere inside a Scene instance...
self.input.register_callback(Event.keyboard_text, on_text_input)
self.input.register_callback(Event.keyboard_text, None) # unregisters the
→˓callback, on_text_input won't be called

2.7.2 KeyboardManager reference

class input.KeyboardManager

Keyboard manager can be accessed via the InputManager.keyboard property.

It allows to check the state (pressed or released) of given key.

Instance methods:

KeyboardManager.is_pressed(keycode)
Checks if a specific key is pressed - keycode param must be a Keycode enum value.

from kaa.input import Keycode

somewhere inside a Scene instance...
if self.input.keyboard.is_pressed(Keycode.w):

... do something if w is pressed
if self.input.keyboard.is_pressed(Keycode.W):

... do something if W is pressed
if self.input.keyboard.is_pressed(Keycode.return_):

... do something if ENTER key is pressed

KeyboardManager.is_released(keycode)
Checks if a specific key is released - keycode param must be a Keycode enum value.

from kaa.input import Keycode

somewhere inside a Scene instance...
if self.input.keyboard.is_released(Keycode.w):

... do something if w is released
if self.input.keyboard.is_released(Keycode.W):

... do something if W is released
if self.input.keyboard.is_released(Keycode.return_):

... do something if ENTER key is released

2.7.3 MouseManager reference

class input.MouseManager

Mouse manager can be accessed via the InputManager.mouse property.

The manager allows to check for the mouse buttons state (pressed/released). It also allows to get the mouse pointer
position.

96 Chapter 2. Kaa engine Reference

kaaengine

Instance properties:

MouseManager.relative_mode
Gets or sets relative mode (as bool). Default is False. Enabling relative mode has two effects: it hides the
mouse pointer and it makes mouse motion events (MouseMotionEvent) be published all the time (by default
those events are published only if mouse moves within game’s window). Disabling the relative mode shows
the mouse pointer and makes mouse motion events be published only if mouse movement occurs within the
window.

MouseManager.cursor_visible
Gets or sets whether the system cursor pointer should be visible.

Instance methods:

MouseManager.is_pressed(mousebutton)
Checks if given mouse button is pressed - mousebutton param must be a MouseButton enum value.

from kaa.input import MouseButton

#somewhere inside a Scene instance...
if self.input.mouse.is_pressed(MouseButton.left):

do something if the left mouse button is pressed

MouseManager.is_released(mousebutton)
Checks if given mouse button is released - mousebutton param must be a MouseButton enum value.

from kaa.input import MouseButton

#somewhere inside a Scene instance...
if self.input.mouse.is_released(MouseButton.middle):

do something if the middle mouse button is released

MouseManager.get_position()
Returns current mouse pointer position as a geometry.Vector.

IMPORTANT: the position is in the display screen frame of reference using the virtual resolution coordinate
system). It is NOT a position of a mouse cursor on the scene. To convert the position to the scene frame of
reference use the engine.Camera.unproject_position() method.

#somewhere inside a Scene instance...
pos = self.input.mouse.get_position():
print(pos) # V[145.234, 345.343]

2.7.4 ControllerManager reference

class input.ControllerManager

Controller Manager can be accessed via the InputManager.controller property.

The manager exposes methods for checking the state of controller’s buttons, sticks and triggers. All major controller
types are supported.

Unlike mouse or keyboard, multiple controllers can be connected and used simultaneously, therefore all manager
methods require passing a controller ID.

You can get the controller ID when controller is first connected. Kaa engine will publish a ControllerEvent
having connected flag set to True. An id field on the event is the controller ID you’re looking for.

When a controller disconnects, you will receive a ControllerEvent with connected flag set to True.

2.7. input — Handling input from keyboard, mouse and controllers 97

kaaengine

Your game code should always keep track of all currently connected controllers (their IDs).

Below is a basic example of keeping track of connected controller IDs and checking few selected properties of each
connected controller:

from kaa.engine import Engine, Scene
from kaa.geometry import Vector
from kaa.input import Keycode, ControllerButton, ControllerAxis

class MyScene(Scene):

def __init__(self):
self.connected_controller_ids = []
self.frame_count = 0

def update(self, dt):
self.frame_count += 1
for event in self.input.events():

if event.controller_device:
if event.controller_device.is_added:

print('New controller connected: id is {}'.format(event.
→˓controller_device.id))

self.connected_controller_ids.append(event.controller_device.id)
elif event.controller_device.is_removed:

print('Controller disconnected: id is {}'.format(event.controller_
→˓device.id))

self.connected_controller_ids.remove(event.controller_device.id)

if event.system and event.system.quit:
self.engine.quit()

Check a few properties of each connected controller:
for controller_id in self.connected_controller_ids:

a_button_pressed = self.input.controller.is_pressed(ControllerButton.a,
→˓controller_id)

b_button_pressed = self.input.controller.is_pressed(ControllerButton.b,
→˓controller_id)

left_stick_x = self.input.controller.get_axis_motion(ControllerAxis.left_
→˓x, controller_id)

left_stick_y = self.input.controller.get_axis_motion(ControllerAxis.left_
→˓y, controller_id)

print('Controller {}. A pressed:{}, B pressed:{}, left stick pos: {},{}'.
→˓format(controller_id,

a_button_pressed, b_button_pressed, left_stick_x, left_stick_y))

with Engine(virtual_resolution=Vector(400, 200)) as engine:
scene = MyScene()
engine.window.size = Vector(400, 200)
engine.window.center()
engine.run(scene)

Instance methods

ControllerManager.is_connected(controller_id)
Checks connection status of a given controller_id.

ControllerManager.is_pressed(controller_button, controller_id)
Checks if given controller button is pressed. The controller_button param must be a ControllerButton

98 Chapter 2. Kaa engine Reference

kaaengine

enum value. Check out the example above on how to obtain the controller_id.

For example, to check the state of B button on controller 0:

from kaa.input import ControllerButton

somewhere in the Scene class:
if self.input.controller.is_pressed(ControllerButton.b, 0):

print('B is pressed on controller 0!')

ControllerManager.is_released(controller_button, controller_id)
Checks if given controller button is released on given controller. The controller_button param must be a
ControllerButton enum value. Check out the example above on how to obtain the controller_id.

For example, to check the state of B button on controller 2:

from kaa.input import ControllerButton

somewhere in the Scene class:
if self.input.controller.is_released(ControllerButton.b, 2):

print('B is released on controller 2!')

ControllerManager.is_axis_pressed(axis, controller_id)
Checks if given stick axes or trigger is in non-zero position. The axis param must be of ControllerAxis
enum value. Check out the example above on how to obtain the controller_id.

For example, to check if controller 1 left trigger is pressed:

from kaa.input import ControllerAxis

somewhere in the Scene class:
if self.input.controller.is_axis_pressed(ControllerAxis.trigger_left, 1):

print('Left trigger is pressed!')

ControllerManager.is_axis_released(axis, controller_id)
Same as above, but checks if given stick axes or trigger is in a zero position. The axis param must be of
ControllerAxis enum value. Check out the example above on how to obtain the controller_id.

ControllerManager.get_axis_motion(axis, controller_id)
Gets an exact value of given stick axes motion or trigger as a number between 0 (stick axes or trigger in zero
position) and 1 (stick axes or trigger in max position). The axis param must be of ControllerAxis enum
value. Check out the example above on how to obtain the controller_id.

For example, to check the state of controller 0 left trigger:

from kaa.input import ControllerAxis

somewhere in the Scene class:
val = self.input.controller.get_axis_motion(ControllerAxis.trigger_right, 0):
print('Controller 0, pulling left trigger {} percent :)'.format(val*100))

ControllerManager.get_name(controller_id)
Returns a name of a controller. Check out the example above on how to obtain the controller_id.

ControllerManager.get_triggers(controller_id)
Returns state of both triggers in a single geometry.Vector object. Vector’s x value is left trigger and
vector’s y is right trigger. Check out the example above on how to obtain the controller_id.

The values returned are between 0 (trigger is fully released) to 1 (trigger is fully pressed)

2.7. input — Handling input from keyboard, mouse and controllers 99

kaaengine

ControllerManager.get_sticks(compound_axis, controller_id)
Returns state of given stick as a geometry.Vector.

The compound_axis parameter must be of CompoundControllerAxis enum value.

Check out the example above on how to obtain the controller_id.

For example, to get the controller 1 left stick position:

somewhere in the Scene class:
val = self.input.controller.get_axis_motion(CompoundControllerAxis.left_stick, 1):
print('Controller 1, left stick position is {}'.format(val))

2.7.5 SystemManager reference

class input.SystemManager

System Manager can be accessed via the InputManager.system property.

The manager exposes methods for working with system related input such as clipboard.

Instance methods:

SystemManager.get_clipboard_text()
Gets text from the system clipboard

SystemManager.set_clipboard_text(text)
Puts the text in the system clipboard

2.7.6 Event reference

class input.Event

As the game is running, a lot of things happen: the player may press or release keyboard keys or mouse buttons, interact
with controller, he can also interact with the window in which your game is running, e.g. maximize or minimize it,
and so on. Kaa engine detects all those events and makes them consumable either via InputManager.events()
method or by registering a callback function InputManager.register_callback().

Each Event instance has identical structure with the following instance properties:

• type - returns event type

• timestamp - returns time of the event occurrence

• system - stores SystemEvent instance if this event is a system related event, otherwise it will be None

• window - stores WindowEvent instance if this event is a window related event, otherwise it will be None

• keyboard_key - stores KeyboardKeyEvent instance if this event is a keyboard key related event, other-
wise it will be None

• keyboard_text - stores KeyboardTextEvent instance if this event is a keyboard text related event,
otherwise it will be None

• mouse_button - stores MouseButtonEvent instance if this event is a mouse button related event, other-
wise it will be None

• mouse_motion - stores MouseMotionEvent instance if this event is a mouse motion related event, other-
wise it will be None

• mouse_wheel - stores MouseWheelEvent instance if this event is a mouse wheel related event, otherwise
it will be None

100 Chapter 2. Kaa engine Reference

kaaengine

• controller_device - stores ControllerDeviceEvent instance if this event is a controller device
related event, otherwise it will be None

• controller_button - stores ControllerButtonEvent instance if this event is a controller button
related event, otherwise it will be None

• controller_axis - stores ControllerAxisEvent instance if this event is a controller axis related
event, otherwise it will be None

• audio - stores AudioEvent instance if this event is an audio related event, otherwise it will be None

Depending on the type of the event only one property will be non-null while all the other properties will be null. This
design usually results in a following way of handling events in the code:

... inside a Scene...
def update(self, dt):

for event in self.input.events():
if event.system:

do something if it's a system event
elif event.window:

do something if it's a window event
elif event.keyboard_key:

do something if it's a keyboard key event
elif event.keyboard_text:

do something if it's a keyboard text event
elif event.mouse_button:

do something if it's a mouse button event
elif event.controller_button:

do something if it's a controller button event
elif event.audio:

do something if it's audio event
... and so on ...

Event class also has descriptors (“static properties”) that return appropariate event types:

• Event.system - returns SystemEvent type

• Event.window - returns WindowEvent type

• Event.keyboard_key - returns KeyboardKeyEvent type

• Event.keyboard_text - returns KeyboardTextEvent type

• Event.mouse_button - returns MouseButtonEvent type

• Event.mouse_motion - returns MouseMotionEvent type

• Event.mouse_wheel - returns MouseWheelEvent type

• Event.controller_device - returns ControllerDeviceEvent type

• Event.controller_button - returns ControllerButtonEvent type

• Event.controller_axis - returns ControllerAxisEvent type

• Event.audio - returns AudioEvent type

which allows checking the type property on the event instance:

... inside a Scene...
def update(self, dt):

(continues on next page)

2.7. input — Handling input from keyboard, mouse and controllers 101

kaaengine

(continued from previous page)

for event in self.input.events():
if event.type == Event.system:

do something
elif event.type == Event.keyboard_key:

do something ...
elif event.type == Event.controller_axis:

do something ...
... and so on

2.7.7 KeyboardKeyEvent reference

class input.KeyboardKeyEvent

Represents an event of pressing or releasing a keyboard key.

See also: KeyboardTextEvent

Instance properties:

KeyboardEvent.key
Returns the key this event is referring to, as Keycode enum value.

KeyboardEvent.is_key_down
Returns True if the key was pressed.

KeyboardEvent.is_key_up
Returns True if the key was released.

2.7.8 KeyboardTextEvent reference

class input.KeyboardTextEvent

Represents an event of text being produced by the keyboard buffer. It lets you conveniently work with the text being
typed in by the player.

Instance properties:

KeyboardTextEvent.text
Returns string with the text typed in.

For example, imagine a user with a polish keyboard pressing shift key, right alt and ‘s’ keys, holding it for some
time and then releasing all pressed keys.

In a text editor it would result in typing something like this:

ŚŚŚŚŚŚ

The way ths will be represented in the kaaengine event flow:

1) You will first receive three KeyboardKeyEvent events: one for pressing the shift key, another for
pressing the alt key and one for pressing the s key

2) You will then receive a number of KeyboardTextEvent events, in this case we have six ‘Ś’ characters
typed, so you will get six events. Reading the text property on KeyboardTextEvent will return “Ś”
string.

3) Finally, you will first receive three KeyboardKeyEvent events: one for releasing the shift key, another
for releasing the alt key and another one for releasing the s key

102 Chapter 2. Kaa engine Reference

kaaengine

2.7.9 MouseButtonEvent reference

class input.MouseButtonEvent

Represents a mouse button related event, such as pressing or releasing a mouse button.

... inside a Scene instance...
for event in self.input.events():

if event.mouse_button:
if event.mouse_button.is_button_down:

print("Mouse button {} is DOWN. Mouse position: {}.".
→˓format(event.mouse_button.button,

event.mouse_button.position))
elif event.mouse_button.is_button_up:

print("Mouse button {} is UP. Mouse position: {}.".format(event.
→˓mouse_button.button,

event.mouse_button.position))

Instance properties:

MouseButtonEvent.button
Returns the button this event is referring to, as MouseButton enum value.

MouseButtonEvent.is_button_down
Returns True if the button was pressed.

MouseButtonEvent.is_button_up
Returns True if the button was released.

MouseButtonEvent.position
Returns mouse pointer position, at the moment of the click, as geometry.Vector. IMPORTANT: the po-
sition is in the display screen frame of reference (using the virtual resolution coordinate system). It is NOT
a position of a mouse cursor on the scene. To convert the position to the scene frame of reference use the
engine.Camera.unproject_position() method on the Camera object.

somewhere inside the Scene instance:
for event in self.input.events():

if event.mouse_button:
if event.mouse_button.is_button_down and event.mouse_button.button ==

→˓MouseButton.left:
mouse_pos_absolute = event.mouse_button.position
mouse_pos_on_scene = self.camera.unproject_position(mouse_pos_

→˓absolute)

2.7.10 MouseMotionEvent reference

class input.MouseMotionEvent

Represents a mouse motion event (changing mouse pointer position). By default those events are published when
mouse pointer is within the window. You can enable the relative_mode on the MouseManager - it hides the
mouse pointer and makes mouse motion events be published whenever the pointer is moved (inside or outside of the
window).

... inside a Scene instance...
for event in self.input.events():

if event.mouse_motion:
print("Mouse motion detected! New position is: {}.".format(event.

→˓mouse_motion.position))

2.7. input — Handling input from keyboard, mouse and controllers 103

kaaengine

Instance properties:

MouseMotionEvent.position
Returns mouse pointer position as geometry.Vector. IMPORTANT: the position is in the display screen
frame of reference (using the virtual resolution coordinate system). It is NOT a position of a mouse cur-
sor on the scene. To convert the position to the scene frame of reference use the engine.Camera.
unproject_position() method on the Camera object.

somewhere inside the Scene instance:
for event in self.input.events():

if event.mouse_motion:
mouse_pos_absolute = event.mouse_button.position
mouse_pos_on_scene = self.camera.unproject_position(mouse_pos_absolute)

MouseMotionEvent.motion
Returns mouse pointer motion (difference between the current and previous position) as geometry.Vector.

2.7.11 MouseWheelEvent reference

class input.MouseWheelEvent

Represents a mouse wheel related event.

Instance properties:

MouseWheelEvent.scroll
Returns a geometry.Vector indicating whether the mouse wheel was scrolled up or down. The y property
in the returned vector holds the value, the x will always be zero.

... inside a Scene instance...
for event in self.input.events():

if event.mouse_wheel:
print("Mouse wheel event detected. Scroll is: {}.".format(event.mouse_

→˓wheel.scroll))

2.7.12 ControllerDeviceEvent reference

Represents a controller device related event, such as controller connected or disconnected.

class input.ControllerDeviceEvent

... inside a Scene instance...
for event in self.input.events():

if event.controller_device:
if event.controller_device.is_added:

print("Controller with id={} connected.".format(event.controller_
→˓device.id)

elif event.controller_device.is_removed:
print("Controller with id={} disconnected.".format(event.controller_

→˓device.id)

Instance properties:

ControllerDeviceEvent.id
Returns an id of controller this event is referring to.

104 Chapter 2. Kaa engine Reference

kaaengine

ControllerDeviceEvent.is_added
Returns True if controller was connected.

ControllerDeviceEvent.is_removed
Returns True if controller was disconnected.

2.7.13 ControllerButtonEvent reference

Represents a controller button related event, such as controller button pressed or released.

class input.ControllerButtonEvent
Note: Controller triggers are considered sticks (axis) not buttons! Use ControllerAxisEvent to check
out events representing triggers changing state.

... inside a Scene instance...
for event in self.input.events():

if event.controller_button:
if event.controller_button.is_button_down:

print("Controller button {} on controller id={} was pressed.".format(
event.controller_button.button, event.controller_button.id)

elif event.controller_button.is_button_up:
print("Controller button {} on controller id={} was released.".format(

event.controller_button.button, event.controller_button.id)

Instance properties:

ControllerButtonEvent.id
Returns an id of controller this event is referring to.

ControllerButtonEvent.button
Returns controller button this event is referring to, as ControllerButton enum value.

ControllerButtonEvent.is_button_down
Returns True if the button was pressed.

ControllerButtonEvent.is_button_up
Returns True if the button was released.

2.7.14 ControllerAxisEvent reference

Represents a controller axis related event, such as controller stick or trigger state change.

... inside a Scene instance...
for event in self.input.events():

if event.controller_axis:
print("Controller axis {} on controller id={} changed its state. New

→˓state is {}.".format(
event.controller_axis.axis, event.controller_axis.id, event.

→˓controller_axis.motion)

class input.ControllerAxisEvent

Instance properties

ControllerAxisEvent.id
Returns an id of controller this event is referring to.

ControllerAxisEvent.axis
Returns axis (controller stick or trigger) this event is referring to, as ControllerAxis enum value.

2.7. input — Handling input from keyboard, mouse and controllers 105

kaaengine

ControllerAxisEvent.motion
Returns the axis (controller stick or trigger) state, as a geometry.Vector. The length of the vector will be
between 0 (stick or trigger is in neutral position) and 1 (stick or trigger is in its maximum position)

2.7.15 AudioEvent reference

class input.AudioEvent

Represents an audio related event.

Instance properties:

AudioEvent.music_finished
Returns True if current music track finished playing.

2.7.16 WindowEvent reference

class input.WindowEvent

Represents a window related event.

Instance properties:

WindowEvent.is_shown
Returns True if the window was shown.

WindowEvent.is_exposed
Returns True if the window was exposed.

WindowEvent.is_moved
Returns True if the window was moved.

WindowEvent.is_resized
Returns True if the window was resized.

WindowEvent.is_minimized
Returns True if the window was minimized.

WindowEvent.is_maximized
Returns True if the window was maximized.

WindowEvent.is_restored
Returns True if the window was restored.

WindowEvent.is_enter
Returns True if the mouse pointer entered the window area.

WindowEvent.is_leave
Returns True if the mouse pointer left the window area.

WindowEvent.is_focus_gained
Returns True if the window gained a focus.

WindowEvent.is_focus_lost
Returns True if the window lost a focus.

WindowEvent.is_close
Returns True if the window was closed.

106 Chapter 2. Kaa engine Reference

kaaengine

2.7.17 SystemEvent reference

class input.SystemEvent

Represents a system related event.

Instance properties:

SystemEvent.quit
Returns True if the game proces is terminating.

SystemEvent.clipboard_updated
Returns True if the system clipboard was updated. You may call SystemManager.
get_clipboard_text() method to check out the text in the system clipboard.

2.7.18 Keycode reference

class input.Keycode

Enum type for referencing keyboard keys when working with KeyboardManager and KeyboardKeyEvent.

Available values are:

• Keycode.unknown

• Keycode.return_

• Keycode.escape

• Keycode.backspace

• Keycode.tab

• Keycode.space

• Keycode.exclaim

• Keycode.quotedbl

• Keycode.hash

• Keycode.percent

• Keycode.dollar

• Keycode.ampersand

• Keycode.quote

• Keycode.leftparen

• Keycode.rightparen

• Keycode.asterisk

• Keycode.plus

• Keycode.comma

• Keycode.minus

• Keycode.period

• Keycode.slash

• Keycode.num_0

2.7. input — Handling input from keyboard, mouse and controllers 107

kaaengine

• Keycode.num_1

• Keycode.num_2

• Keycode.num_3

• Keycode.num_4

• Keycode.num_5

• Keycode.num_6

• Keycode.num_7

• Keycode.num_8

• Keycode.num_9

• Keycode.colon

• Keycode.semicolon

• Keycode.less

• Keycode.equals

• Keycode.greater

• Keycode.question

• Keycode.at

• Keycode.leftbracket

• Keycode.backslash

• Keycode.rightbracket

• Keycode.caret

• Keycode.underscore

• Keycode.backquote

• Keycode.a

• Keycode.b

• Keycode.c

• Keycode.d

• Keycode.e

• Keycode.f

• Keycode.g

• Keycode.h

• Keycode.i

• Keycode.j

• Keycode.k

• Keycode.l

• Keycode.m

• Keycode.n

108 Chapter 2. Kaa engine Reference

kaaengine

• Keycode.o

• Keycode.p

• Keycode.q

• Keycode.r

• Keycode.s

• Keycode.t

• Keycode.u

• Keycode.v

• Keycode.w

• Keycode.x

• Keycode.y

• Keycode.z

• Keycode.A

• Keycode.B

• Keycode.C

• Keycode.D

• Keycode.E

• Keycode.F

• Keycode.G

• Keycode.H

• Keycode.I

• Keycode.J

• Keycode.K

• Keycode.L

• Keycode.M

• Keycode.N

• Keycode.O

• Keycode.P

• Keycode.Q

• Keycode.R

• Keycode.S

• Keycode.T

• Keycode.U

• Keycode.V

• Keycode.W

• Keycode.X

2.7. input — Handling input from keyboard, mouse and controllers 109

kaaengine

• Keycode.Y

• Keycode.Z

• Keycode.capslock

• Keycode.F1

• Keycode.F2

• Keycode.F3

• Keycode.F4

• Keycode.F5

• Keycode.F6

• Keycode.F7

• Keycode.F8

• Keycode.F9

• Keycode.F10

• Keycode.F11

• Keycode.F12

• Keycode.printscreen

• Keycode.scrolllock

• Keycode.pause

• Keycode.insert

• Keycode.home

• Keycode.pageup

• Keycode.delete

• Keycode.end

• Keycode.pagedown

• Keycode.right

• Keycode.left

• Keycode.down

• Keycode.up

• Keycode.numlockclear

• Keycode.kp_divide

• Keycode.kp_multiply

• Keycode.kp_minus

• Keycode.kp_plus

• Keycode.kp_enter

• Keycode.kp_1

• Keycode.kp_2

110 Chapter 2. Kaa engine Reference

kaaengine

• Keycode.kp_3

• Keycode.kp_4

• Keycode.kp_5

• Keycode.kp_6

• Keycode.kp_7

• Keycode.kp_8

• Keycode.kp_9

• Keycode.kp_0

• Keycode.kp_period

• Keycode.application

• Keycode.power

• Keycode.kp_equals

• Keycode.F13

• Keycode.F14

• Keycode.F15

• Keycode.F16

• Keycode.F17

• Keycode.F18

• Keycode.F19

• Keycode.F20

• Keycode.F21

• Keycode.F22

• Keycode.F23

• Keycode.F24

• Keycode.execute

• Keycode.help

• Keycode.menu

• Keycode.select

• Keycode.stop

• Keycode.again

• Keycode.undo

• Keycode.cut

• Keycode.copy

• Keycode.paste

• Keycode.find

• Keycode.mute

2.7. input — Handling input from keyboard, mouse and controllers 111

kaaengine

• Keycode.volumeup

• Keycode.volumedown

• Keycode.kp_comma

• Keycode.kp_equalsas400

• Keycode.alterase

• Keycode.sysreq

• Keycode.cancel

• Keycode.clear

• Keycode.prior

• Keycode.return2

• Keycode.separator

• Keycode.out

• Keycode.oper

• Keycode.clearagain

• Keycode.crsel

• Keycode.exsel

• Keycode.kp_00

• Keycode.kp_000

• Keycode.thousandsseparator

• Keycode.decimalseparator

• Keycode.currencyunit

• Keycode.currencysubunit

• Keycode.kp_leftparen

• Keycode.kp_rightparen

• Keycode.kp_leftbrace

• Keycode.kp_rightbrace

• Keycode.kp_tab

• Keycode.kp_backspace

• Keycode.kp_a

• Keycode.kp_b

• Keycode.kp_c

• Keycode.kp_d

• Keycode.kp_e

• Keycode.kp_f

• Keycode.kp_xor

• Keycode.kp_power

112 Chapter 2. Kaa engine Reference

kaaengine

• Keycode.kp_percent

• Keycode.kp_less

• Keycode.kp_greater

• Keycode.kp_ampersand

• Keycode.kp_dblampersand

• Keycode.kp_verticalbar

• Keycode.kp_dblverticalbar

• Keycode.kp_colon

• Keycode.kp_hash

• Keycode.kp_space

• Keycode.kp_at

• Keycode.kp_exclam

• Keycode.kp_memstore

• Keycode.kp_memrecall

• Keycode.kp_memclear

• Keycode.kp_memadd

• Keycode.kp_memsubtract

• Keycode.kp_memmultiply

• Keycode.kp_memdivide

• Keycode.kp_plusminus

• Keycode.kp_clear

• Keycode.kp_clearentry

• Keycode.kp_binary

• Keycode.kp_octal

• Keycode.kp_decimal

• Keycode.kp_hexadecimal

• Keycode.lctrl

• Keycode.lshift

• Keycode.lalt

• Keycode.lgui

• Keycode.rctrl

• Keycode.rshift

• Keycode.ralt

• Keycode.rgui

• Keycode.mode

• Keycode.audionext

2.7. input — Handling input from keyboard, mouse and controllers 113

kaaengine

• Keycode.audioprev

• Keycode.audiostop

• Keycode.audioplay

• Keycode.audiomute

• Keycode.mediaselect

• Keycode.www

• Keycode.mail

• Keycode.calculator

• Keycode.computer

• Keycode.ac_search

• Keycode.ac_home

• Keycode.ac_back

• Keycode.ac_forward

• Keycode.ac_stop

• Keycode.ac_refresh

• Keycode.ac_bookmarks

• Keycode.brightnessdown

• Keycode.brightnessup

• Keycode.displayswitch

• Keycode.kbdillumtoggle

• Keycode.kbdillumdown

• Keycode.kbdillumup

• Keycode.eject

• Keycode.sleep

2.7.19 MouseButton reference

class input.MouseButton

Enum type for referencing mouse buttons when working with MouseManager and MouseButtonEvent.

Available values are:

• MouseButton.left

• MouseButton.middle

• MouseButton.right

• MouseButton.x1

• MouseButton.x2

114 Chapter 2. Kaa engine Reference

kaaengine

2.7.20 ControllerButton reference

class input.ControllerButton

Enum type for referencing controller buttons when working with ControllerManager and
ControllerButtonEvent. Note that left and right triggers are not buttons, they’re considered axis (see
ControllerAxisEvent)

Available values are:

• ControllerButton.a

• ControllerButton.b

• ControllerButton.x

• ControllerButton.y

• ControllerButton.back

• ControllerButton.guide

• ControllerButton.start

• ControllerButton.left_stick

• ControllerButton.right_stick

• ControllerButton.left_shoulder

• ControllerButton.right_shoulder

• ControllerButton.dpad_up

• ControllerButton.dpad_down

• ControllerButton.dpad_left

• ControllerButton.dpad_right

2.7.21 ControllerAxis reference

class input.ControllerAxis

Enum type for referencing controller axes when working with ControllerManager and
ControllerAxisEvent.

Available values are:

• ControllerAxis.left_y

• ControllerAxis.left_x

• ControllerAxis.right_x

• ControllerAxis.right_y

• ControllerAxis.trigger_left

• ControllerAxis.trigger_right

2.7. input — Handling input from keyboard, mouse and controllers 115

kaaengine

2.7.22 CompoundControllerAxis reference

class input.CompoundControllerAxis

Enum type for referencing sticks (left or right) when working with some of ControllerManager methods.

Available values are:

• CompoundControllerAxis.left_stick

• CompoundControllerAxis.right_stick

2.8 log — kaaengine logging settings

By default kaa logs everything to stderr.

2.8.1 get_core_logging_level() reference

log.get_core_logging_level(core_catgory)
Gets logging level for given category. The core_category param must be a CoreLogCategory enum
value.

2.8.2 set_core_logging_level() reference

log.set_core_logging_level(core_catgory, level)
Sets a logging level for given category.

The core_category param must be a string with kaa module name.

List of available kaa module names: “nodes”, “node_ptr”, “engine”, “files”, “log”, “renderer”, “images”, “in-
put”, “audio”, “scenes”, “shapes”, “physics”, “resources”, “resources_manager”, “sprites”, “window”, “ge-
ometry”, “fonts”, “timers”, “transitions”, “node_transitions”, “camera”, “views”, “spatial_index”, “threading”,
“utils”, “embedded_data”, “easings”, “shaders”, “other”, “app”, “wrapper”

The level parameter must be a CoreLogLevel enum value.

Note: By default kaa logs everything to stderr.

from kaa.log import set_core_logging_level, CoreLogCategory, CoreLogLevel

set_core_logging_level("audio", CoreLogLevel.verbose)

2.8.3 CoreLogLevel reference

class log.CoreLogLevel
Enum type used to reference log levels. Available values are:

• CoreLogLevel.verbose

• CoreLogLevel.debug

• CoreLogLevel.info

• CoreLogLevel.warn

116 Chapter 2. Kaa engine Reference

kaaengine

• CoreLogLevel.error

• CoreLogLevel.critical

2.9 nodes — Your objects on the scene

2.9.1 Node reference

Nodes are the core concept of the kaa engine. They’re “objects” which you can add to the Scene. Each Node has
its spatial properties such as position, rotation or scale. A Node may also have a sprite (graphics loaded from a file),
which can be animated. Nodes have other properties such as z_index, shape, color, origin etc. All those properties are
described in the documentation below.

A Node can have child Nodes, which you can add with the Node.add_child() method, thus creating a tree-like
structure of nodes on the scene. As the parent node gets transformed (changes its position, rotation or scale) all its
children nodes will transform accordingly.

Each engine.Scene instance has a root node - this is the first node on the Scene to which you can start adding your
own Nodes.

A node without a sprite image (or without a shape and color properties set explicitly) will be just a logical entity on
the scene, in other words: you won’t see it. Such logical Nodes are often very useful, for example, as a containers for
grouping other nodes.

Although the bare Node will do its job well and allow you to create simple games, the Kaa engine comes with a
collection of other specialized Nodes (they all inherit from the Node class):

• physics.SpaceNode - a container node to simulate the physical environment.

• physics.BodyNode - a physical node which can have hitbox nodes. Can interact with other BodyNodes.
Must be a direct child of SpaceNode. Can have zero or more Hitbox Nodes.

• physics.HitboxNode - defines an area that can collide with other hitboxes, and allows wiring up your own
collision handler function. Hitbox Node must be a child node of a BodyNode.

• fonts.TextNode - a node used to render text on the screen.

For your game’s actual objects such as Player, Enemy, Bullet, etc. we recommend writing classes that inherit from the
Node class (or BodyNode if you want the object to utilize kaaengine’s physics features).

class nodes.Node(position=Vector(0, 0), rotation=0, scale=Vector(1, 1), z_index=None, color=Color(0,
0, 0, 0), sprite=None, shape=None, origin_alignment=Alignment.center, life-
time=None, transition=None, visible=True, views=None)

A basic example how to create a new Node (with a sprite) and add it to the Scene:

from kaa.nodes import Node
from kaa.sprites import Sprite
from kaa.geometry import Vector
import os

inside a Scene's __init__ :
my_sprite = Sprite(os.path.join('assets', 'gfx', 'arrow.png') # create a sprite
→˓from image file
self.node = Node(position=Vector(100, 100), sprite=my_sprite)) # create a Node
→˓at (100, 100) with the sprite
self.root.add_child(self.node) # until you add the Node to the Scene it won't
→˓not show up on the screen!

Instance Properties:

2.9. nodes — Your objects on the scene 117

kaaengine

Node.children
Returns a list of child nodes of this Node.

Node.scene
Returns a Scene instance to which this Node belongs. Will be None if the node has not been added to any
Scene yet. Use Node.add_child() method to add nodes. Each Scene has a root node to which you can add
nodes.

Node.position
Gets or sets node position, as a geometry.Vector.

IMPORTANT: Node position is always get or set relative to its parent node. To get the absolute position, use
the absolute_position property.

If the Node is few levels deep in the nodes hierarchy and you want to know the position of the node in relation
to one of its ancestors, use get_relative_position() method.

from kaa.nodes import Node
from kaa.geometry import Vector

inside a Scene's __init__ :
self.node1 = Node(position = Vector(100, 100))
self.root.add_child(self.node1) # adding to scene's root node, so node1 absolute
→˓position is (100, 100)
create a child node
self.node2 = Node(position = Vector(-20, 30))
self.node1.add_child(self.node2)
print(self.node2.position) # prints out V[-20, 30]
print(self.node2.absolute_position) # prints out V[80, 130]

Also see: Node origin points.

Node.absolute_position
Read only. Gets an absolute position of the node, i.e. the position on the scene. Returns geometry.Vector.

Check out the example in the position property section.

Node.parent
Retruns this node’s parent Node, or None in case of the root node.

Node.root_distance
Retruns this node’s distance to the root node (counted as number of parents on the way to the root), or None in
case of the root node.

Node.z_index
Gets or sets node z_index (integer). Nodes with higher z_index will overlap those with lower z_index when
drawn on the screen. Default z_index is None meaning the node will inherit z_index value from its parent. To
find the actual z_index value in this case, use effective_z_index property.

Scene’s root node (engine.Scene.root) has z_index = 0.

Note: If parent and child nodes have the same z_index, then the child node will be rendered on top of the
parent.

Node.effective_z_index
Gets effective z_index value of the node. Use it to find actual the actual z_index value when node inherits it
from its parent.

118 Chapter 2. Kaa engine Reference

kaaengine

... inside a Scene class...

node = Node(z_index=15)
child = Node() # z_index is None

node.add_child(child)
self.root.add_child(node)

print(child.z_index) # prints None
print(child.effective_z_index) # prints 15

Node.rotation
Gets or sets node rotation, in radians. There is no capping value, meaning you can set it to values greater than
math.pi*2 or lower than -math.pi*2.

IMPORTANT: Node rotation is always get or set relative to its parent node. To get the absolute rotation, use
the absolute_rotation property.

Changing node rotation will make the node rotate around its origin point. Read more about Node origin points.

import math
from kaa.nodes import Node
from kaa.geometry import Vector

inside a Scene's __init__ :
add node 1
self.node1 = Node(position = Vector(100, 100), rotation=math.pi / 4)
self.root.add_child(self.node1)
add node 2 as child of node 1
self.node2 = Node(position = Vector(10, 10), rotation=math.pi / 4)
self.node1.add_child(self.node2)

print(self.node1.rotation) # 0.7853981633974483 (math.pi / 4)
print(self.node2.rotation) # 0.7853981633974483 (math.pi / 4)
print(self.node2.absolute_rotation) # 1.5707963705062866 (math.pi / 2)

Node.absolute_rotation
Read only. Returns an absolute rotation of the node, in radians. Check out the example in the rotation property
section.

Node.rotation_degrees
Same as rotation property, but uses degrees (as float). There is no capping value, meaning you can set it to
values greater than 360 degrees or smaller than -360 degrees.

Changing node rotation will make the node rotate around its origin point. Read more about Node origin points.

See also: absolute_rotation_degrees.

Node.absolute_rotation_degrees
Read only. Same as absolute_rotation but returns degrees.

Node.scale
Gets or sets the node scale, as geometry.Vector.

IMPORTANT: Node scale is always get or set relative to its parent node. To get the absolute scale, use the
absolute_scale property.

The x value of the vector represents scaling in the X axis, while y value is for scaling in the Y axis. Negative
values of x or y are possible - it will make the node to be rendered as a mirror reflection in X and/or Y axis
respectively.

2.9. nodes — Your objects on the scene 119

kaaengine

import math
from kaa.nodes import Node
from kaa.geometry import Vector

inside a Scene's __init__ :
self.node1 = Node(position = Vector(100, 100))
self.root.add_child(self.node1)
self.node1.scale = Vector(2, 0.5) # stretch the node by a factor of 2 in the X
→˓axis and shrink it by a factor of 0.5 in the Y axis

add a child node
self.node2 = Node(position=Vector(-5, -15), scale=Vector(4, 0.5))
self.node1.add_child(self.node2)

print(self.node1.scale) # V[2.0, 0.5]
print(self.node2.scale) # V[4.0, 0.5]
print(self.node2.absolute_scale) # V[8.0, 0.25]

Node.absolute_scale
Read only. Returns an absolute scale, as geometry.Vector. Check out the example in the scale property
section.

Node.visible
Gets or sets the visibility of the node (shows or hides it), using bool.

Makes most sense for nodes which are rendered on the screen such as nodes having sprites, or text nodes.

Note that this has only a visual effect, so for example setting visible to False on a physics.
HitboxNode will not make the hitbox inactive - it will still detect collisions normally.

Setting visible to False will hide all of its child nodes (recursively) as well.

Node.sprite
Gets or sets a sprites.Sprite for the node.

A sprite is an immutable object that wraps a graphical image.

Assigning a Sprite to a Node will make the sprite be displayed at node’s position, with node’s rotation and scale.

Creating a frame by frame animation is a two step process:

First you’ll need to have a list of frames, each frame being an individual sprites.Sprite instance. You
can load each frame from a separate file or, if you have a spritesheet (a single graphical file which includes all
frames) use the utility function sprites.split_spritesheet() to cut the sprites out of the file.

Second, you’ll need to create a transitions.NodeSpriteTransition transition using the list of
sprites, which also allows you to specify the animation duration, looping etc. and assign that transition to
the node

Note: Transitions are a more general mechanism than just sprite animations. Read more about transitions
here..

Since sprite is a dimensional object (has its width and height) and node position is just a 2D (x, y) coords, it is
important to understand the concept of node’s origin point. Read more about Node origin points.

Example 1 - a node with a static sprite.

from kaa.nodes import Node
from kaa.sprites import Sprite

(continues on next page)

120 Chapter 2. Kaa engine Reference

kaaengine

(continued from previous page)

from kaa.geometry import Vector, Alignment
import os

inside a Scene's __init__ :
my_sprite = Sprite(os.path.join('assets', 'gfx', 'arrow.png') # create a sprite
→˓from image file
self.node = Node(position=Vector(100, 100), sprite=my_sprite)) # create a Node
→˓at (100, 100) with the sprite
self.node.origin_alignment = Alignment.center # this makes the (100, 100)
→˓position be at the center of the sprite
self.root.add_child(self.node) # until you add the Node to the Scene it won't
→˓show up on the screen!

Example 2 - a node with frame by frame animation running in an infinite loop:

from kaa.nodes import Node
from kaa.sprites import Sprite
from kaa.geometry import Vector
from kaa.transitions import NodeSpriteTransition

inside a Scene's __init__:
spritesheet = Sprite(os.path.join('assets', 'gfx', 'spritesheet.png') # a
→˓1000x1000 spritesheet with hundred 100x100 frames
frames = split_spritesheet(spritesheet, Vector(100,100)) # cut the spritesheet
→˓into 100 individual <Sprite> instances
animation = NodeSpriteTransition(frames, duration=2., loops=0, back_and_
→˓forth=False) # With 100 frames a duration of 2 secs means 20 miliseconds per
→˓frame.
self.node = Node(position=Vector(100, 100), transition=animation) # the
→˓transition will take care of setting the appropriate <Sprite> over time, thus
→˓creating an animation effect.
self.root.add_child(self.node) # until you add the Node to the Scene it won't
→˓show up on the screen!

To stop playing an animation simply set the node’s transition to None

Node.color
Gets or sets the color of the shape of the node, using colors.Color.

In practice, if a node has a sprite that means that a sprite will be tinted in that color.

If a node does not have a sprite it still can have a shape (see the shape property). In that case setting a color will
make the shape be rendered in that color.

For text nodes (fonts.TextNode) it gets or sets the color of the text.

It is often useful to set a color for hitbox nodes (physics.HitboxNode) to see where the hitboxes are in
relation to the node’s sprite. Just remember to set a high enough z_index on the hitbox node.

The default color of a Node is a “transparent” color (r=0, g=0, b=0, a=0).

Node.shape
Gets or sets a shape of a Node. A shape can be one of the following types:

• None - this is the default value (no shape)

• geometry.Circle - the shape has a form of a circle

• geometry.Polygon - the shape has a form of a polygon.

2.9. nodes — Your objects on the scene 121

kaaengine

The most common scenario for setting a shape manually is for the hitbox nodes (physics.HitboxNode). It
defines an area that will generate collisions. More information is available in the physics module documentation).

If you set a Sprite for a Node, its shape will be automatically set to a rectangular polygon corresponding with
the size of the sprite.

Overriding sprite node’s shape is usually not necessary, but you can always do that. For example, you can set a
100x200 px sprite for a node and then set a custom shape e.g. a non-rectangular polygon or a circle. The drawn
image will be fit inside the defined shape.

Node.origin_alignment
Gets or sets origin alignment of a node, as geometry.Alignment.

It’s best to show what origin point is on an example. Assume you have a Node with a 100x50 px sprite. You tell
the engine to draw the node at some specific position e.g. position=Vector(300, 200). But what does
this actually mean? Which pixel of the 100x50 image will really be drawn at (300, 200)? The top-left pixel? Or
the central pixel? Or maybe some other pixel?

By default it’s the central pixel and that reference point is called the ‘origin’. By setting the origin_alignment
you can change the position of the point to one of the 9 default positions: from top left, through center to the
bottom right.

Setting the origin alignment is especially useful when working with text nodes (fonts.TextNode) as it
allows you to align text to the left or right.

If you need a custom origin point position, not just one of the 9 default values, you can always wrap a node
with a parent node. Remember that node positions are always set in relation to their parents, so by creating a
parent-child node relations and setting origin_alignment appropriately, you can lay out the nodes on the scene
any way you want.

Node.lifetime
Gets or sets a lifetime of the node, in seconds.

By default nodes live forever. After you add them to the scene with Node.add_child() method they will
stay there until you delete them by calling Node.delete().

Setting the lifetime of a node will remove the node automatically from the scene after given number of seconds.
It’s important to note that the timer starts ticking after you add the node to the scene, not when you instantiate
the node.

Node.transition
Gets or sets a default transition object.

Transitions are “recipes” how the node’s properties (such as position, rotation, scale, color, sprite, etc.) should
evolve over time. Transitions system is a very powerful feature, refer to transitions documentation for details.

Node.transitions_manager
Read only. Returns a transitions.NodeTransitionsManager object which allows you to manage
multiple transitions on a Node.

Transitions are “recipes” how the node’s properties (such as position, rotation, scale, color, sprite, etc.) should
evolve over time. Transitions system is a very powerful feature, refer to transitions documentation for details.

Node.absolute_transformation
Gets the absolute transformation of the Node, in form of a geometry.Transformation instance.

Node.transformation
Gets or sets the transformation of the Node, in form of a geometry.Transformation instance. Applying a
transformation to the node is an equivalent of changing its position (translate Transformation), rotation (rotating
Transformation) or scale (scaling Transtofmation). Refer to geometry.Transformation for more details
on how to work with transformation objects.

122 Chapter 2. Kaa engine Reference

kaaengine

Node.views
Gets or sets indexes of views (as a set object) in which this node shall be rendered. Each scene can have a
maximum of 32 views (indexed -16 to 15). Default value is None meaning the node will inherit the view from
its parent, and to find the actual views value use effective_views property.

Note that the root node of the scene has a view set to {0} (a set with just one element: zero) by default, so
all nodes added to root (and their children) will have a views value set to {0}. Read more about views in
engine.View reference.

self.root.add_child(Node(position=Vector(32,45), sprite=some_sprite)) # will be
→˓rendered in the default view
self.root.add_child(Node(position=Vector(-432,-445), sprite=some_sprite, views={0,
→˓ 1, 15})) # will be rendered in views 0, 1 and 15

node = Node(views={13}) # node will be rendered in view 13
child = Node()
node.add_child(child) # the child will also be rendered in view 13

Node.effective_views
Gets effective views value of the node. Use it to find the actual views value when node inherits it from its parent.

... inside a Scene class...

node = Node(views={1, 3})
child = Node() # views is None

node.add_child(child)
self.root.add_child(node)

print(child.views) # prints None
print(child.effective_views) # prints {1, 3}

Node.indexable
Gets or sets whether the node is indexable (as bool). Default is True. If set to True, this Node will be
queryable by the engine.SpatialIndexManager.

Setting this value to False yields a slight performance boost.

Node.bounding_box
Returns node’s bounding box as geometry.BoundingBox. Bounding box is X/Y axis - aligned rectangle
that contains Node’s shape.

Instance Methods:

Node.add_child(child_node)
Adds a child node to the current node. The child_node must be a Node type or subtype.

Each Scene always has a root node, which allows to add your first nodes.

When a parent node gets transformed (repositioned, scaled, rotated), all its child nodes are transformed accord-
ingly.

You can build the node tree freely, with some exceptions:

• physics.BodyNode must be a direct child of a physics.SpaceNode

• physics.HitboxNode must be a direct child of a physics.BodyNode

Node.delete()
Deletes a node from the scene. All child nodes get deleted automatically as well.

2.9. nodes — Your objects on the scene 123

kaaengine

Important: The node gets deleted immediately so you should not read any of the deleted node’s properties
afterwards. It may result in segmentation fault error and the whole process crashing down.

See also: Node lifetime

Node.get_relative_position(ancestor)
Returns node’s position (geometry.Vector) relative to given ancestor.

The ancestor parameter must be a Node and it must be an ancestor of a node on which the method is called.

Node.get_relative_transformation(ancestor)
Returns node’s transformation (geomtry.Transformation) relative to given ancestor.

The ancestor parameter must be a Node and it must be an ancestor of a node on which the method is called.

Node.on_detach()
You don’t call this method directly. Instead you can implement it on a class that inherits from Node. The
method gets called when the node is removed from the scene (by calling delete(), its lifetime expiring, scene
being destroyed, and so on. . .).

Once the node gets removed, accessing its properties results in an error, so on_detach() offers an opportunity
to execute some cleanup code.

class MyBulletNode(Node):

def on_detach(self):
remove the node from our own custom collection
self.scene.my_bullets_manager.remove_bullet(self)

Node.on_attach()
You don’t call this method directly. Instead you can implement it on a class that inherits from Node. The method
gets called when the node is added to the scene.

class MyBulletNode(Node):

def on_attach(self):
add the node to our own custom collection
self.scene.my_bullets_manager.add_bullet(self)

Node.__bool__(self)
Allows to inspect the node to verify if it’s in a valid state.

... inside a scene
node = Node()
self.root.add_child(node)
assert node
node.delete()
assert not node

2.10 physics — A 2D physics system, with rigid bodies, collisions
and more!

Kaa inlcudes a 2D physics engine which allows you to easily add physical features to objects in your game, handle
collisions etc. The idea is based on three types of specialized nodes:

• SpaceNode - it represents physical simulation environment, introducing environmental properties such as
gravity or damping.

124 Chapter 2. Kaa engine Reference

kaaengine

• BodyNode - represents a physical body. Each BodyNode must be a direct child of a physics.SpaceNode.
BodyNode can have HitboxNodes as child nodes.

• HitboxNode - represents an area of a BodyNode which can collide with other HitboxNodes. Must be a direct
child of a physics.BodyNode.

Read more about the nodes concept in general.

Note: Physics system present in the kaa engine is a wrapper of an excellent 2D physics library - Chipmunk.

2.10.1 SpaceNode reference

class physics.SpaceNode(gravity=Vector(0, 0), damping=1, position=Vector(0, 0), rotation=0,
scale=Vector(1, 1), z_index=0, color=Color(0, 0, 0, 0), sprite=None,
shape=None, origin_alignment=Alignment.center, lifetime=None, transi-
tion=None, visible=True)

SpaceNode extends the nodes.Node. It represents physical simulation environment. All BodyNodes must be
direct children of a SpaceNode. Typically you’ll need just one SpaceNode per Scene, but nothing prevents you
from adding more. If you decide to use multiple SpaceNodes on a Scene, be aware that they will be isolated
(BodyNodes under SpaceNode A won’t be able to interact with BodyNodes under SpaceNode B).

Space node is also place where you can register collision handlers (see SpaceNode.
set_collision_handler()). Collision handlers are your custom functions which will be called
when a collision between a pair of defined hitbox nodes occurs.

Another feature of the SpaceNode is running spatial queries. You can find hitboxes colliding with a cus-
tom shape (geometry.Circle, geometry.Polygon or geometry.Segment) via SpaceNode.
query_shape_overlaps(). You can find hitboxes colliding with a ray cast between points A and B using
SpaceNode.query_ray(). Finally you can also find hitboxes around a specific point with SpacenNode.
query_point_neighbors().

Constructor accepts all parameters from the base nodes.Node class and adds the following new parameters:

• gravity - a geometry.Vector

• damping - a number

Instance properties:

SpaceNode.gravity
Gets or sets the gravity inside the SpaceNode, as geometry.Vector. Direction of the vector determines the
direction of the gravitational force, while it’s length determines gravity strength.

Gravity will be applied only to the dynamic BodyNodes. Kinematic and Static BodyNodes do not have mass
and therefore are not affected by the gravity.

Default gravity is zero, meaning no gravitational forces applied.

SpaceNode.damping
Gets or sets the damping inside the SpaceNode. Represents a “friction” or a “drag force” inside the environment
which slows all BodyNodes down with time. A damping of 0.25 means velocity of all BodyNodes will decrease
by a factor of 4 in 1 second. A damping of 1 (default) means no slowdown force applied. A damping greater
than 1 will make all BodyNodes accelerate, proportionally to its value.

Damping is applied only to the dynamic BodyNodes. Kinematic and Static BodyNodes do not have mass and
therefore ignore the damping effect.

SpaceNode.sleeping_threshold
Gets of sets the sleep time threshold (in seconds) which affects all BodyNodes in the SpaceNode. If given

2.10. physics — A 2D physics system, with rigid bodies, collisions and more! 125

https://chipmunk-physics.net/documentation.php

kaaengine

BodyNode remains static (doesn’t change its position or rotation) for that amount of time the engine will stop
making physical calculations for it. In some situations it can improve the performance. A body remaining in a
sleeping state can still collide with other bodies - that will force it to move and ‘wake up’ as a consequence.

Default value for the sleeping_threshold is infinite, which effectively means that the performance mechanism is
disabled.

Instance methods:

SpaceNode.set_collision_handler(trigger_a, trigger_b, handler_callable)
Registers a custom collision handler function between two HitboxNode instances, tagged with trigger_a and
trigger_b respectively. The function will get called when collision between hitboxes occur.

Note, that collisions occur between HitboxNodes (not between BodyNodes!). The trigger_a and
trigger_b params are your own values which you use to tag HitboxNode. They should be of integer
type.

handler_callable is your own callable, it takes the following three parameters:

• arbiter - an Arbiter object that holds additional information about collision.

• collision_pair_a- a CollisionPair object that allows identifying which BodyNode and which
HitboxNoded collided. Corresponds with HitboxNode identified by trigger_a.

• collision_pair_b- a CollisionPair object that allows identifying which BodyNode and which
HitboxNoded collided. Corresponds with HitboxNode identified by trigger_b.

If your collision handler function does not return any value, the collision will occur normally. However if you
return 0 in the collision handler AND you do that in the begin or pre_solve phase, then collision will be ignored
by the physics engine (no impulses will be applied to colliding objects).

somwhere in the code...
bullet_hitbox = HitboxNode(shape=Circle(radius=10), trigger_id=123,) #
→˓123 is our own value we give to all bullet hitboxes
enemy_hitbox = HitboxNode(shape=Circle(radius=10), trigger_id=456,) #
→˓456 is our own value we give to all enemy hitboxes

collision handler function:
def on_collision_bullet_enemy(arbiter, bullet_pair, enemy_pair):

print("Detected a collision between a bullet object's {} hitbox {} and Enemy
→˓'s object {} hitbox {}".format(

bullet_pair.body, bullet_pair.hitbox, enemy_pair.body, enemy_pair.hitbox))
... write code to handle the collision effects

assuming space_node is <SpaceNode>,
123 and 456 here are defining which pair of hitbox collisions shall be handled
→˓by the on_collision_bullet_enemy
in this case it defines a pair of a bullet hitbox and enemy hitbox
space_node.set_collision_handler(123, 456, on_collision_bullet_enemy)

IMPORTANT: Collision handler function can be called multiple times for given pair of colliding objects (even
multiple times per frame). This can happen if object’s hitboxes touch for the first time, then they either overlap
or touch each other for some time and finally - they separate. The collision handler function will be called every
frame, as long as the hitboxes touch or overlap. When they make apart, the collision handler function stops
being called.

SpaceNode.query_shape_overlaps(shape, mask=kaa.physics.COLLISION_BITMASK_ALL,
collision_mask=kaa.physics.COLLISION_BITMASK_ALL,
group=kaa.physics.COLLISION_GROUP_NONE)

Takes a shape (geometry.Circle or geometry.Polygon) and returns hitboxes which overlap with that

126 Chapter 2. Kaa engine Reference

kaaengine

shape (either partially or entirely) as well as body nodes which own those hitboxes. The shape coordinates are
expected to be in a frame reference relative to the SpaceNode.

When running the query, the shape you pass is treated like a hitbox node, therefore parameters such as mask,
collision_mask and group behave identically as in HitboxNode. It means you can use those params for
filtering purpose. Refer to mask, collision_mask and group for more information.

The query returns a list of ShapeQueryResult objects. Each ShapeQueryResult represents a ‘collision’
of the shape with one hitbox. It holds a reference to hitbox’ parent (body node) and other metadata such as
intersection points.

from kaa.physics import SpaceNode, BodyNode, HitboxNode
from kaa.geometry import Polygon

self.space = SpaceNode()
self.root.add_child(self.space)
body_node = BodyNode(position=Vector(0, 0))
hitbox = HitboxNode(shape=Polygon.from_box(Vector(100, 100)))
body_node.add_child(hitbox)
self.space.add_child(body_node)
find hitboxes intersecting with our triangular polygon
triangle = Polygon([Vector(0, 0), Vector(100, 100), Vector(0, 200)])
results = self.space.query_shape_overlaps(triangle)
for result in results:

print(f"Shape {triangle.points} collided with hitbox {result.hitbox.shape.
→˓points} owned "

f"by {result.body}. Contact points metadata accessible at {result.
→˓contact_points}.")

SpaceNode.query_ray(ray_start, ray_end, radius=0., mask=kaa.physics.COLLISION_BITMASK_ALL,
collision_mask=kaa.physics.COLLISION_BITMASK_ALL,
group=kaa.physics.COLLISION_GROUP_NONE)

A “ray casting” method. Takes in a ray (two Vectors: ray_start and ray_end) and returns hitboxes (and
their owning BodyNodes) which collide with that ray. The ray coordinates are expected to be in a frame refer-
ence relative to the SpaceNode.

The radius parameter sets the width of the cast ray.

When running the query, the ray is treated like a hitbox node, therefore parameters such as mask, collision_mask
and group behave identically as in HitboxNode. It means you can use those params for filtering purpose. Refer
to mask, collision_mask and group for more information.

The query returns a list of RayQueryResult objects. Each represents a collision of the ray with one hitbox.
It holds a reference to hitbox owner (body node) and other metadata such as intersection point.

from kaa.physics import SpaceNode, BodyNode, HitboxNode
from kaa.geometry import Polygon

self.space = SpaceNode()
self.root.add_child(self.space)
body_node = BodyNode(position=Vector(0, 0))
hitbox = HitboxNode(shape=Polygon.from_box(Vector(100, 100)))
body_node.add_child(hitbox)
self.space.add_child(body_node)

cast a ray and find hitboxes colliding with the ray
results = self.space.query_ray(ray_start=Vector(-200, -200), ray_end=Vector(200,
→˓200))
for result in results:

(continues on next page)

2.10. physics — A 2D physics system, with rigid bodies, collisions and more! 127

kaaengine

(continued from previous page)

print(f"Ray collided with {result.hitbox.shape.points} hitbox owned by
→˓{result.body} at "

f"{result.point}. Normal was {result.normal} and alpha was {result.
→˓alpha}")

SpaceNode.query_point_neighbors(point, max_distance, mask=kaa.physics.COLLISION_BITMASK_ALL,
collision_mask=kaa.physics.COLLISION_BITMASK_ALL,
group=kaa.physics.COLLISION_GROUP_NONE)

Queries for hitboxes max_distance away from point. The point must be a geometry.Vector.

When running the query, the point is treated like a hitbox node, therefore parameters such as mask, colli-
sion_mask and group behave identically as in HitboxNode. It means you can use those params for filtering
purpose. Refer to mask, collision_mask and group for more information.

The query returns a list of PointQueryResult objects which contain collision data such as references to
hitbox, its owner body node and other metadata.

from kaa.physics import SpaceNode, BodyNode, HitboxNode
from kaa.geometry import Polygon

self.space = SpaceNode()
self.root.add_child(self.space)
body_node = BodyNode(position=Vector(0, 0))
hitbox = HitboxNode(shape=Polygon.from_box(Vector(100, 100)))
body_node.add_child(hitbox)
self.space.add_child(body_node)

find hitboxes in the vicinity of a point
point = Vector(-140, 140)
results = self.space.query_point_neighbors(point=point, max_distance=200)
for result in results:

print(f"Point {point} collided with hitbox {result.hitbox.shape.points} owned
→˓"

f"by {result.body}. Collision point is at {result.point}, distance:
→˓{result.distance}")

2.10.2 BodyNode reference

class physics.BodyNode(body_type=BodyNodeType.dynamic, force=Vector(0, 0), velocity=Vector(0,
0), mass=20.0, moment=10000.0, torque=0, torque_degrees=0, angu-
lar_velocity=0, angular_velocity_degrees=0, position=Vector(0, 0), rota-
tion=0, scale=Vector(1, 1), z_index=0, color=Color(0, 0, 0, 0), sprite=None,
shape=None, origin_alignment=Alignment.center, lifetime=None, transi-
tion=None, visible=True)

BodyNode extends the nodes.Node class, introducing physical features.

In the nodes tree, BodyNode must be a direct child of a SpaceNode.

BodyNode is the only node type which can have HitboxNode as children nodes.

BodyNodes themselves never collide with each other. The need to have HitboxNodes as children to generate
collisions. A BodyNode can have multiple HitboxNodes.

BodyNode constructor accepts all parameters from the base nodes.Node class and adds the following new
parameters:

• body_type - a BodyNodeType enum value. Learn more here

128 Chapter 2. Kaa engine Reference

kaaengine

• force - a geometry.Vector

• velocity - a geometry.Vector

• mass - a number

• moment - a number

• torque - a number

• torque_degrees - a number, alternative to torque, using degrees instead of radians

• angular_velocity - a number

• angular_velocity_degrees - a number, alternative to angular_velocity, using degrees in-
stead of radians

Instance properties:

BodyNode.body_type
Gets or sets body type, must be a BodyNodeType value. There are three types available:

• static - the body has infinite mass and won’t move when its hitboxes collide with any other hitboxes. You
cannot move it “manually” by setting its velocity or angular velocity either. Those nodes are truly static.

• kinematic - similar to static body in a sense that its velocity or rotation will never be affected by anything,
e.g. its hitboxes colliding. But the difference is that you can move and rotate that type of body. The
collisions will occur normally and you will be able to handle them.

• dynamic - the default type. Physics engine will calculate body’s velocity and angular velocity when its
hitboxes will collide with other bodies’ hitboxes.

Use static bodies for static obstacles and other elements on the scene that you know won’t move, but you want
them to collide with other bodies and block their movement. Those bodies will always have zero velocity and
zero angular velocity.

Use kinematic bodies for objects which you want to move but you don’t want their velocity controlled by the
physics engine. Those nodes won’t move or rotate on their own. The onus is on you to set their velocity or
angular velocity but you still want to be able to detect collisions between them and other objects on the scene.

Use dynamic bodies for freely moving objects that you want physics engine to fully take care of. Dynamic
bodies have their velocity and angular velocity calculated by the engine.

Note: Example: a classic space shooter Git Gud or Get Rekt, built with kaa engine is using kinematic bodies
for player, enemies, and bullets, and dynamic bodies for debris left on the scene after enemies explode.

BodyNode.force
Gets or sets a custom force applied to the BodyNode, as geometry.Vector. The force is reset to zero on
each frame, so if you want it to constantly work on the object, you need to apply it on each frame.

Applying force affects object’s velocity.

Force has an effect only on dynamic body nodes. Static and kinematic body nodes will not be affected.

BodyNode.local_force
Same as BodyNode.force but uses strictly local frame of reference.

node.rotation_degrees = 0
node.force = Vector(1, 0) # force will drag the object in direction V(1, 0),
→˓regardless to node rotation

(continues on next page)

2.10. physics — A 2D physics system, with rigid bodies, collisions and more! 129

https://store.steampowered.com/app/1117810/Git_Gud_or_Get_Rekt/

kaaengine

(continued from previous page)

other_node.rotation_degrees = 45
other_node.local_force = Vector(1, 0) # force direction will be calculated AFTER
→˓applying the rotation!

BodyNode.velocity
Gets or sets the linear velocity of the BodyNode, as geometry.Vector. Linear velocity vector determines
the speed and direction of movement of an object.

For dynamic body nodes the velocity is calculated by the physics engine. You can override the velocity value
calculated by the engine but you should consider applying force instead.

Setting velocity from your code is recommended for kinematic bodies, as they won’t move on their own other-
wise.

BodyNode.mass
Gets or sets the mass for the body node. Mass has an effect on the output velocity of dynamic body when it
collides with other bodies.

BodyNode.torque
Gets or sets the torque for the body node. Using radians. The torque is reset to zero on each frame, so if you
want it to constantly work on the object you need to apply it on each frame.

Applying torque affects object’s angular velocity.

Applying torque has an effect only on dynamic body nodes. Static and kinematic body nodes are not affected.

For degrees use torque_degrees

BodyNode.torque_degrees
Gets or sets the torque for the body node. Using degrees. See torque

BodyNode.angular_velocity
Gets or sets the angular velocity for the body node. Using radians. Angular velocity determines how fast the
object rotates and the direction of the rotation (clockwise or anticlockwise).

Similarly to velocity the angular velocity is calculated by the physics engine for dynamic body nodes. You can
override the angular velocity manually but you should consider applying torque instead.

Setting angular velocity from your code is recommended for kinematic bodies, as they won’t rotate on their own
otherwise.

For degrees use angular_velocity_degrees

BodyNode.angular_velocity_degrees
Gets or sets the angular velocity for the body node. Using degrees. See angular_velocity

BodyNode.moment
Gets or sets the moment for the body node. Moment has an effect on the output angular velocity of dynamic
body when it collides with other bodies.

BodyNode.sleeping
Gets or sets the sleeping status of the node as bool. If set to True it gives the physics engine a performance
hint, making it ignore this node when calculating its velocity and angular velocity. The node will wake up
automatically when it’s moving or rotating so it doesn’t makes sense to set the sleeping status on a moving or
rotating nodes.

See also: SpaceNode.sleeping_threshold.

Instance methods:

BodyNode.apply_force_at_local(force, at)
Applies force (geometry.Vector) to this body node at position at (geometry.Vector). The at

130 Chapter 2. Kaa engine Reference

kaaengine

parameter is in a relative frame of reference. For example, if at is Vector(0, 0) then the force will be
applied at the center of the body node.

Note: Applied force will be automatically reset to zero each frame, so if you want to apply force constantly
you should do that on each frame.

BodyNode.apply_impulse_at_local(impulse, at)
Applies impulse (geometry.Vector) to this body node at position at (geometry.Vector). The at
parameter is in a relative frame of reference. For example, if at is Vector(0, 0) then the impulse will be
applied at the center of the body node.

Note: Use impulses when you need to apply a very large force applied over a very short period of time. Some
examples are a ball hitting a wall or cannon firing.

BodyNode.apply_force_at(force, at)
Same as BodyNode.apply_force_at_local() but at is in an absolute frame of reference. For instance,
if body node’s absolute position is Vector(110, 34) and you want to apply the force at the center of the body,
you need to pass at=Vector(110, 34).

BodyNode.apply_impulse_at(impulse, at)
Same as BodyNode.apply_impulse_at_local() but at is in an absolute frame of reference. For
instance, if body node’s absolute position is Vector(110, 34) and you want to apply the impulse at the center of
the body, you need to pass at=Vector(110, 34).

2.10.3 HitboxNode reference

class physics.HitboxNode(shape, group=kaa.physics.COLLISION_GROUP_NONE,
mask=kaa.physics.COLLISION_BITMASK_ALL, colli-
sion_mask=kaa.physics.COLLISION_BITMASK_ALL, trigger_id=None,
position=Vector(0, 0), rotation=0, scale=Vector(1, 1), z_index=0,
color=Color(0, 0, 0, 0), sprite=None, shape=None, sensor=False,
elasticity=0.95, friction=0, surface_velocity=Vector(0, 0), ori-
gin_alignment=Alignment.center, lifetime=None, transition=None,
visible=True))

HitboxNode extends the Node class and introduces collision detection features.

In the nodes tree, HitboxNode must be a direct child of a BodyNode. A BodyNode can have many HitboxN-
odes.

HitboxNode inherits all Node properties and methods, some of which may be particularly useful for debugging.
For example, by setting a color and z_index of on a HitboxNode you can make the hitbox visible.

Hitbox node has its own specific params, related with collision handling:

• shape - can be either geometry.Polygon or geometry.Circle

• group - an integer, default value is a kaa constant meaning “no group”. Hitboxes within the same group
will never collide with each other.

• mask - an integer, used as a bit mask, it’s recommended to use enum.Intflag enumerated constant. Default
value is a kaa constant meaning “match all masks”. Defines a category of this hitbox.

• collision_mask - an integer, used as a bit mask, it’s recommended to use enum.Intflag enumerated
constant. Default value is a kaa constant meaning “match all masks”. Defines with which categories this
hitbox should collide.

2.10. physics — A 2D physics system, with rigid bodies, collisions and more! 131

kaaengine

• trigger_id - an integer, your own value used with the SpaceNode.
set_collision_handler() method. Used in custom collision handling.

The hitbox node also has a few properties affecting its physical behaviour:

• sensor

• elasticity

• friction

• surface_velocity

Instance properties:

HitboxNode.shape
Gets or sets the shape of the hitbox. It can be either geometry.Polygon or geometry.Circle.

HitboxNode.group
Gets or sets the group of the hitbox, as integer. Hitboxes with the same group won’t collide with each other. It’s
basically a performance hint for the physics engine. Default value is kaa.physics.COLLISION_GROUP_NONE,
meaning no group is used.

Another method of telling the engine which hitbox collisions it should ignore is to set mask and
collision_mask on a HitboxNode.

HitboxNode.mask
Gets or sets the category of this hitbox node, as a bit mask. Other nodes will collide with this node if they match
on collision_mask. Otherwise collisions will be ignored. Use mask and collision_mask as performance hints
for the engine.

By default mask and hitbox_mask are kaa.physics.COLLISION_BITMASK_ALL which meaning the engine
will not apply any filtering when detecting collisions - hitbox with those values will collide with any other
hitbox.

An example below shows how to set mask and collision_mask values to apply the following logic:

• player hitbox will collide only with enemy hitbox, enemy bullet hitbox and wall hitbox

• player bullet hitbox will collide only with the enemy hitbox

• enemy hitbox will collide only with other enemy hitboxes, player, player bullet and wall hitbox

• enemy bullet will collide only with the player hitboxes

• wall will collide with everything except other wall hitboxes

from kaa.physics import HitboxNode
from kaa.geometry import Circle, Vector, Polygon
import enum

class CollisionMask(enum.IntFlag):
player = enum.auto()
player_bullet = enum.auto()
enemy = enum.auto()
enemy_bullet = enum.auto()
wall = enum.auto()

player_collision_mask = enemy | enemy_bullet | wall
enemy_collision_mask = enemy | player | player_bullet | wall
wall_collision_mask = player | player_bullet | enemy | enemy_bullet

player_hitbox = HitboxNode(shape=Circle(radius=20), mask=CollisionMask.player,

(continues on next page)

132 Chapter 2. Kaa engine Reference

kaaengine

(continued from previous page)

collision_mask=CollisionMask.player_collision_mask)
player_bullet_hitbox = HitboxNode(shape=Circle(radius=5), mask=CollisionMask.
→˓player_bullet,

collision_mask=CollisionMask.enemy)
enemy_hitbox = HitboxNode(shape=Circle(radius=20), mask=CollisionMask.enemy,

collision_mask=CollisionMask.enemy_collision_mask)
enemy_bullet_hitbox = HitboxNode(shape=Circle(radius=5), mask=CollisionMask.enemy_
→˓bullet,

collision_mask=CollisionMask.player)
wall = HitboxNode(shape=Polygon([Vector(-50, -50), Vector(-50, 50), Vector(0,
→˓100)],

mask=CollisionMask.wall, collision_mask=CollisionMask.wall_
→˓collision_mask))

What if there’s assymetry in the mask and collision_mask definitions? For example, what will happens if we set
the player to collide with enemy, but won’t set enemy to collide with the player? In that case, those collisions
won’t occur. The collision masks need to match symmetrically from both sides for collision to be detected.

What if there is a proper symmetry in collision mask definitions but both hitboxes have the same group? In that
case the group value takes precedence and collisions won’t occur.

HitboxNode.collision_mask
Gets or sets the categories of other hitboxes that you want this hitbox to collide with.

See the full example in the mask section above for more information.

HitboxNode.trigger_id
Gets or sets the trigger id value. It can be any value of your choice. It’s a ‘tag’ value which you need to pass
when registering your custom collision handler function

HitboxNode.sensor
Gets or sets the sensor flag (bool). Default is False. If set to True, the hitbox will not cause any physical col-
lision effects (i.e. will not interact with other colliding objects) but will still trigger its collision handler function
(check out SpaceNode.set_collision_handler method for more info on how to register a collision handlers for
hitboxes).

HitboxNode.elasticity
Gets or sets hitbox elasticity, as float. This is a percentage of kinetic energy transferred during collision and
should be between 0 and 1. A value of 0.0 gives no bounce, while a value of 1.0 will give a “perfect” bounce.
Default elasticity is 0.95. The elasticity for a collision is found by multiplying the elasticity of the interacting
hitboxes together.

HitboxNode.friction
Gets or sets hitbox friction coefficient, as float. Physics engine uses the Coulomb friction model, a value of
0.0 is frictionless. The friction for a collision is found by multiplying the friction of the interacting hitboxes
together. Default is 0.

HitboxNode.surface_velocity
Gets or sets hitbox surface velocity, as geometry.Vector. Useful for creating conveyor belts or players
that move around. This value is only used when calculating friction, not resolving the collision. Default is
Vector(0, 0) (no surface velocity)

2.10.4 ShapeQueryResult reference

class physics.ShapeQueryResult
ShapeQueryResult object is returned by the SpaceNode.query_shape_overlaps() method. A single
query can return multiple ShapeQueryResult objects. A ShapeQueryResult has the following properties:

2.10. physics — A 2D physics system, with rigid bodies, collisions and more! 133

kaaengine

• hitbox - an instance of HitboxNode which collided

• body - a BodyNode instance that owns the hitbox

• contact_points - a list of CollisionContactPoint objects which contain information about
collision points

2.10.5 CollisionContactPoint reference

class physics.CollisionContactPoint
A CollisionContactPoint instance represents an actual point where collision between two shapes occurred. It
has the following properties:

• point_a

• point_b

• distance

2.10.6 Arbiter reference

class physics.Arbiter
Arbiter object is passed to the collision handler function when collision occurs. It holds information about the
collision in following fields:

• space - a SpaceNode where collision occurred.

• phase - an enum value (CollisionPhase), indicating collision phase. Available values are:

– CollisionPhase.begin - indicates that collision betwen two objects has started (their hitboxes
have just touched or overlapped)

– CollisionPhase.pre_solve - indicates that two hitboxes are still in contact (touching or over-
lapping). It is called before the engine calculates the physics (e.g. velocities of both colliding objects)

– CollisionPhase.post_solve - like pre_solve, but called after the engine calculates the
physics for the objects.

– CollisionPhase.separate - indicates that hitboxes of our two objects have separated - the
collision has ended

2.10.7 CollisionPair reference

class physics.CollisionPair
CollisionPair object is passed to the collision handler function (see SpaceNode.
set_collision_handler()). It holds references to an object that collided. The CollisionPair has
the following fields:

• body - referencing BodyNode which collided

• hitbox - referencing HitboxNode which collided. Note that body nodes can have multiple hitboxes:
here you can find which of them has collided

2.10.8 BodyNodeType reference

class physics.BodyNodeType
Enum type used for classifying BodyNodes. It has the following values:

134 Chapter 2. Kaa engine Reference

kaaengine

• BodyNodeType.static

• BodyNodeType.dynamic

• BodyNodeType.kinematic

Refer to BodyNode’s body_type property for more information.

2.10.9 CollisionPhase reference

class physics.CollisionPhase
Enum type used by the collision handler Arbiter. It has the following values:

• CollisionPhase.begin

• CollisionPhase.pre_solve

• CollisionPhase.post_solve

• CollisionPhase.separate

2.10.10 RayQueryResult reference

class physics.RayQueryResult
RayQueryResult objects are returned by the SpaceNode.query_ray() method. A ShapeQueryResult rep-
resents a collision between a ray and a hitbox. It has the following properties:

• hitbox - an instance of HitboxNode which collided

• body - a BodyNode instance that owns the hitbox

• point - a geometry.Vector where the ray intersected the hitbox

• normal - a geometry.Vector with ray reflection direction. This vector is normalized.

• alpha - a float number indicating distance from the ray start point to the point where collision occurred.
The distance is in relation to the ray length so the number is always between 0 and 1.

2.10.11 PointQueryResult reference

class physics.PointQueryResult
PointQueryResult objects are returned by the SpaceNode.query_point_neighbors() method. Prop-
erties are

• hitbox - an instance of HitboxNode which collided

• body - a BodyNode instance that owns the hitbox

• point - a geometry.Vector coords of the nearest point of collision

• distance - a geometry.Vector with a distance to the point of collision

2.11 statistics — Statistics module

2.11.1 StatisticsManager reference

Statistics manager is a reporting tool, surfacing basic metrics of kaa engine. To get the statistics manager
instance use the get_global_statistics_manager() method.

2.11. statistics — Statistics module 135

kaaengine

class MyScene(Scene):

def __init__(self):

self.stats_manager = get_global_statistics_manager()

def update(self, dt):

self.stats_manager.push_value('custom statistic', random.gauss(10, 2))

print(self.stats_manager.get_last_all())
print(self.stats_manager.get_analysis_all())

class statistics.StatisticsManager

Instance methods:

StatisticsManager.get_last_all()
Returns the last value of each metric. Returned is a list of tuples in form of (‘statistic name’, value)

StatisticsManager.get_analysis_all()
Returns aggregated metric data. Returned is a list of tuples in form of (‘statistic name’, <StatisticAnalysis
instance>). Check out StatisticAnalysis for more information.

StatisticsManager.push_value(stat_name, value)
Allows to push your own custom statistic. stat_name must be a string, and value must be a double. Your
custom statistic will be reported by get_last_all() and get_analysis_all() methods.

2.11.2 StatisticAnalysis reference

class statistics.StatisticAnalysis
The StatisticAnalysis object wraps statistical properties of a larger sample of measurmenets.

Instance properties:

StatisticAnalysis.samples_count
Size of a sample.

StatisticAnalysis.last_value
The most recent value.

StatisticAnalysis.mean_value
The mean value.

StatisticAnalysis.standard_deviation
The standard deviation.

StatisticAnalysis.max_value
The maximum value.

StatisticAnalysis.min_value
The minimum value.

2.11.3 get_global_statistics_manager() reference

statistics.get_global_statistics_manager()
A method to get the StatisticsManager instance.

136 Chapter 2. Kaa engine Reference

kaaengine

2.12 sprites — Using image assets

2.12.1 Sprite reference

class sprites.Sprite(image_filepath)
Sprite instance represents an image. The constructor accepts a path to a file. Supported formats are png and jpg.

Sprites instances are immutable.

If you want to load just a fragment of the image from a file, use the Sprite.crop() method.

If the file contains a spritesheet with multiple frames, use a helper function split_spritesheet() to
automatically create a Sprite for each frame.

If the file includes multiple spritesheets, use the combination of Sprite.crop() and
split_spritesheet() to ‘cut’ all frames from their respective areas.

For information how to draw a Sprite on the screen or how to create animations, see here.

A full example:

import os
from kaa.sprites import Sprite
from kaa.engine import Engine, Scene
from kaa.geometry import Vector
from kaa.nodes import Node

class MyScene(Scene):

def __init__(self):
self.root.add_child(Node(position=Vector(100,100),

sprite=Sprite(os.path.join('demos', 'assets',
→˓'python_small.png'))))

def update(self, dt):

for event in self.input.events():
if event.system and event.system.quit:

self.engine.quit()

with Engine(virtual_resolution=Vector(400, 200)) as engine:
scene = MyScene()
engine.window.size = Vector(400, 200)
engine.window.center()

engine.run(scene)

Instance Properties

Sprite.size
Returns Sprite size (width and height), as geometry.Vector

Sprite.origin
If the sprite was a result of a crop, it will return crop’s origin point. Otherwise it’ll return Vector(0,0)

Instance methods

Sprite.crop(origin, dimensions)
Returns a new Sprite, by cropping the original sprite.

2.12. sprites — Using image assets 137

kaaengine

The origin parameter is the start position of the crop - pass geometry.Vector indicating the (x,y) coor-
dinates of the start position

The dimensions determines is the width and height of the crop - pass geometry.Vector where x and y
are desired width and height respectively.

from kaa.sprites import Sprite
from kaa.geometry import Vector

inside a Scene's __init__:
sprite = Sprite('path/to/sprite.png') # sprite.png being a 1000x1000 px file.
print(sprite.size) # V[1000x1000]
new_sprite = sprite.crop(Vector(150,200), Vector(20,30)) # crop a new (20x30)
→˓sprite, starting at (150,200)
print(new_sprite.size) # V[20,30]

2.12.2 split_spritesheet() reference

sprites.split_spritesheet(spritesheet, frame_dimensions, frames_offset=0, frames_count=None,
frame_padding=None)

When an image file is a spritesheet you need to ‘cut’ it into individual Sprites (individual frames), which you can
then use for making an animation using transitions.NodeSpriteTransition. This utility function
does the cutting for you. It takes the following params:

• spritesheet - a Sprite instance holding your spritesheet

• frame_dimensions - dimensions of a single frame, expects geometry.Vector where x is frame
width and y is frame height

• frames_offset - if you’re interested in getting a subset of the frames, pass the start frame index.
Default offset is zero (start from the first frame)

• frames_count - if you’re interested in getting just a subset of the frames, pass the number of frames.
By default the function will ‘cut’ as many frames as geometrically possible.

• frame_padding - some spritesheet tools can add a padding to each frame, if your spritesheet is using
that feature pass a geometry.Vector where x is left+right padding and y is top+bottom padding.
Example: if using 1-pixel padding on all sides, pass Vector(2,2)

The function will process the spritesheet going from left to right and from top to bottom, cutting out the indi-
vidual frames, returning a list of Sprites.

suppose a spritesheet.png is a 1000x1000 file with a hundred frames of 100x100
→˓size
spritesheet = Sprite('path/to/spritesheet.png')
cut all frames:
all_frames = split_spritesheet(spritesheet, Vector(100, 100))
cut 10 frames, from 20 to 29
subset_of_frames = split_spritesheet(spritesheet, Vector(100, 100), frames_
→˓offset=20, frames_count=10)
crop a 40x40 area starting from (20,20), and cut five frames starting from
→˓frame 3
another_subset_of_frames = split_spritesheet(spritesheet.crop(Vector(20,20),
→˓Vector(40,40)),

frame_offset=3, frames_count=5)

138 Chapter 2. Kaa engine Reference

kaaengine

2.13 timers — a simple timer

2.13.1 Timer reference

class timers.Timer(callback_func)
Timer will call the callback_func callable after time specified when calling the start() or
start_global() method.

The callback_func callable implementation receives one parameter - timer_context which is a
TimerContext instance.

def my_func(self, timer_context):
print('Triggered by the timer!')

global_timer = Timer(my_func)
global_timer.start_global(1.5) # in seconds

... somewhere inside a Scene:

def my_func(self, timer_context):
print('Triggered by the timer!')

def add_timer(self):
timer = Timer(my_func)
timer.start(1.5, scene=self) # in seconds

The callback_func may return a numeric value. It will reset the timer, allowing to run it in a loop:

def my_func(self, timer_context):
new_interval = random.uniform(1.0, 2.0)
print('Resetting the timer with interval of {} seconds'.format(new_interval))
return new_interval # this resets the timer

global_timer = Timer(my_func)
global_timer.start_global(1.5) # in seconds

Instance properties:

Timer.is_running
Returns True if the timer is running.

Instance methods:

Timer.start(interval, scene)
Starts the timer in a context of a specific engine.Scene instance. After interval seconds, the timer’s
callback function (defined in the constructor) will be invoked.

There are few reasons why you may want a scene instance associated with a timer:

• If you change scene to a new one, the timers associated with the previous scene will stop running automat-
ically

• When a scene gets destroyed, timers associated with that scene will be destroyed as well and you won’t
receive any surprise callbacks.

• Timers utilize engine.Scene.time_scale property.

Calling start() on a running timer resets the timer.

2.13. timers — a simple timer 139

kaaengine

Timer.start_global(interval)
Same as start() but does not require passing a scene. Use it if you need a “global” timer.

Timer.stop()
Stops the timer.

2.13.2 TimerContext reference

An object passed to timer’s callback function

Instance properties:

TimerContext.scene
Read only. Gets the scene (as engine.Scene instance). Will be None if timer was called with Timer.
start_global() method.

TimerContext.interval
Read only. Interval with which the timer was called.

2.14 transitions — A quick and easy way to automate transform-
ing your nodes

When writing a game you’ll often want to apply a set of known transformations to a nodes.Node. For example,
you want your Node to move 100 pixels to the right, then wait 3 seconds and return 100 pixels to the left. Or you’ll
want the node to pulsate (smoothly change its scale between some min and max values), or rotate back and forth. YOu
may want to have any combination of those effects applied (either one after another or parallel). There’s an unlimited
number of such visual transformations and their combinations, that you may want to have in your game.

You can of course implement all this, by having a set of boolean flags, time trackers, etc. and use all those helper
variables to manually change the desired properties of your nodes from within the update() method. But there is an
easier way: the mechanism is called Transitions. A single Transition object is a recipe of how a given property of
a Node (position, scale, rotation, color, sprite, etc.) should change over time. Transition can be played once, given
number of times or in a loop. You can also chains transitions to run one after another or in parallel.

Transitions are the primary way of creating animations. Since animation is nothing else than just changing Node’s
sprite over time, the transition mechanism comes useful for that purpose.

2.14.1 Common transition parameters

Note: All transitions are immutable.

To create a Transition you’ll typically need to pass the following parameters:

• advance_value - advance value for given transition type (e.g. target position for
NodePositionTransition).

• duration - transition duration time, in seconds

• advance_method - an enum value of AttributeTransitionMethod type which determines how the advance_value will be applied to modify the appropriate node property.

– AttributeTransitionMethod.set - node’s property will be changed towards the ad-
vance_value over time

– AttributeTransitionMethod.add - node’s property will be changed towards the current
value + advance_value over time

140 Chapter 2. Kaa engine Reference

kaaengine

– AttributeTransitionMethod.multiply - node’s property will be changed towards the cur-
rent value * advance_value over time

• loops - Optional. How many times the transition should “play”. Set to 0 to play infinite number of times.
Default is 1.

• back_and_forth - Optional. If set to True, the transition will be played back and forth (that counts as one
“loop”). Default is False.

• easing - Optional. An enum value of easings.Easing - specifies the rate of change of a value over time.
Default is Easing.none which really means a linear easing.

Note: The duration parameter always refers to one loop, one direction. So for example, transition with the fol-
lowing set of parameters: duration=1., loops=3, back_and_forth=True will take 6 seconds. 1 second
played back and forth is 2 seconds, and it will be played 3 times, hence a total time of 6 seconds.

Note: If back_and_forth is set to True, the transition will play back and forth which counts as one loop.

All transitions use linear easing. More built-in easing types are to be added soon.

2.14.2 Examples

Change position of a node, from (100,100) to (30, 70) over 2 seconds.

node = Node(position=Vector(100, 100), sprite=Sprite('image.png'))
node.transition = NodePositionTransition(Vector(30, 70), 2.)

Change position of a node, from (100,100) by (30, 70), i.e. to (130, 170) over 2 seconds.

node = Node(position=Vector(100, 100), sprite=Sprite('image.png'))
node.transition = NodePositionTransition(Vector(30, 70), 2., advance_
→˓method=AttributeTransitionMethod.add)

Change position of a node, from (100, 100) by (x30, x70), i.e. to (3000, 7000) over 2 seconds.

node = Node(position=Vector(100, 100), sprite=Sprite('image.png'))
node.transition = NodePositionTransition(Vector(30, 70), 2., advance_
→˓method=AttributeTransitionMethod.multiply)

Change position of a node, from (100,100) to (30, 70) then back to the initial position (100,100) over 2 seconds.

node = Node(position=Vector(100, 100), sprite=Sprite('image.png'))
node.transition = NodePositionTransition(Vector(30, 70), 2., back_and_forth=True)

Change position of a node, from (100,100) to (30, 70) then get back to the initial position over 2 seconds. Repeat it 3
times.

node = Node(position=Vector(100, 100), sprite=Sprite('image.png'))
node.transition = NodePositionTransition(Vector(30, 70), 2., loops=3, back_and_
→˓forth=True)

Change the scale of a node (twice on the X axis and three times on the Y axis) over 1 second.

2.14. transitions — A quick and easy way to automate transforming your nodes 141

kaaengine

node = Node(position=Vector(100, 100), sprite=Sprite('image.png'))
node.transition = NodeScaleTransition(Vector(2, 3), 1.)

Change the scale of a node (twice on the X axis and three times on the Y axis) over 1 second. Repeat indefinitely
(creating pulsation effect).

node = Node(position=Vector(100, 100), sprite=Sprite('image.png'))
node.transition = NodeScaleTransition(Vector(2, 3), 1., loops=0)

Rotate the node 90 degrees clockwise over 3 seconds

node = Node(position=Vector(100, 100), sprite=Sprite('image.png'))
node.transition = NodeRotationTransition(math.pi/2, 3.)

Change position of a node by (150, 100) over 2 seconds, then enlarge it twice over 1 second, then do nothing for 2
seconds, finally rotate it 180 degrees over 3 seconds. Play the whole sequence two times, back and forth.

node = Node(position=Vector(100, 100), sprite=Sprite('image.png'))
transitions = [

NodePositionTransition(Vector(150, 100), 2., advance_
→˓method=AttributeTransitionMethod.add),

NodeScaleTransition(Vector(2, 2), 1.),
NodeTransitionDelay(2.),
NodeRotationTransition(math.pi, 3.)

]
node.transition = NodeTransitionsSequence(transitions, loops=2, back_and_forth=True)

Do everything the same like in previous example but have the node simultaneously change its color to red, back and
forth in 1500 milisecond intervals.

node = Node(position=Vector(100, 100), sprite=Sprite('image.png'))
transitions = [

NodePositionTransition(Vector(150, 100), 2., advance_
→˓method=AttributeTransitionMethod.add),

NodeScaleTransition(Vector(2, 2), 1.),
NodeTransitionDelay(2.),
NodeRotationTransition(math.pi, 3.)

]
color_transition = NodeColorTransition(Color(1,0,0,1), 1.5, loops=0, back_and_
→˓forth=True)

node.transition = NodeTransitionsParalel([
color_transition,
NodeTransitionsSequence(transitions, loops=2, back_and_forth=True)

])

Change position of a node, from (100,100) to (30, 70) over 2 seconds and call function my_func when the transition
ends.

def my_func(transitioning_node):
print('Function called!')

node = Node(position=Vector(100, 100), sprite=Sprite('image.png'))
node.transition = NodeTransitionSequence([

NodePositionTransition(Vector(30, 70), 2.),
NodeTransitionCallback(my_func)])

Change sprite of a node, creating an animation effect:

142 Chapter 2. Kaa engine Reference

kaaengine

spritesheet = Sprite(os.path.join('assets', 'gfx', 'spritesheet.png')
frames = split_spritesheet(spritesheet, Vector(100,100)) # cut the spritesheet into
→˓<Sprite> instances
animation = NodeSpriteTransition(frames, duration=2., loops=0, back_and_forth=False)
node = Node(position=Vector(100, 100), transition=animation)

Change z_index of a node over time:

node = Node(position=Vector(100, 100), sprite=Sprite('image.png'))
node.transition = NodeZIndexSteppingTransition([1,2,3,4,5,6,10,100], 1000)

2.14.3 NodePositionTransition reference

class transitions.NodePositionTransition(advance_value, duration, ad-
vance_method=AttributeTransitionMethod.set,
loops=1, back_and_forth=False, eas-
ing=Easing.none)

Use this transition to change Node’s position gradually over time, towards given advance_value or by given
advance_value.

The advance_value param must be a geometry.Vector and is the target position value (or position
change value)

Refer to the Common transition parameters and Examples sections for information on other parameters used by
the transition.

2.14.4 NodeRotationTransition reference

class transitions.NodeRotationTransition(advance_value, duration, ad-
vance_method=AttributeTransitionMethod.set,
loops=1, back_and_forth=False, eas-
ing=Easing.none)

Use this transition to change Node’s rotation gradually over time, towards given advance_value or by given
advance_value.

The advance_value param must be a float and is the target rotation value (or rotation change value), in
radians.

Refer to the Common transition parameters and Examples sections for information on other parameters used by
the transition.

2.14.5 NodeScaleTransition reference

class transitions.NodeScaleTransition(value, duration, ad-
vance_method=AttributeTransitionMethod.set,
loops=1, back_and_forth=False, eas-
ing=Easing.none)

Use this transition to change Node’s scale gradually over time, towards given advance_value or by given ad-
vance_value.

The advance_value param must be a geometry.Vector and is the target scale value (or scale change
value) for X and Y axis respectively.

Refer to the Common transition parameters and Examples sections for information on other parameters used by
the transition.

2.14. transitions — A quick and easy way to automate transforming your nodes 143

kaaengine

2.14.6 NodeColorTransition reference

class transitions.NodeColorTransition(value, duration, ad-
vance_method=AttributeTransitionMethod.set,
loops=1, back_and_forth=False, eas-
ing=Easing.none)

Use this transition to change Node’s scale gradually over time, towards given advance_value or by given ad-
vance_value.

The advance_value param must be a colors.Color and is the target color value (or color change value).

Note that each component of the color (R, G, B, and A) is trimmed to a 0-1
range, so when using advance_method=AttributeTransitionMethod.set or
advance_method=AttributeTransitionMethod.multiply which would result in R G B or
A going above 1 or below 0 - the value will be capped at 1 and 0 respectively.

Refer to the Common transition parameters and Examples sections for information on other parameters used by
the transition.

2.14.7 BodyNodeVelocityTransition reference

class transitions.BodyNodeVelocityTransition(value, duration, ad-
vance_method=AttributeTransitionMethod.set,
loops=1, back_and_forth=False, eas-
ing=Easing.none)

Use this transition to change BodyNode’s velocity gradually over time, towards given advance_value or by given
advance_value.

The advance_value param must be a geometry.Vector and is the target velocity value (or velocity
change value).

Refer to the Common transition parameters and Examples sections for information on other parameters used by
the transition.

2.14.8 BodyNodeAngularVelocityTransition reference

class transitions.BodyNodeAngularVelocityTransition(value, duration, ad-
vance_method=AttributeTransitionMethod.set,
loops=1, back_and_forth=False,
easing=Easing.none)

Use this transition to change BodyNode’s angular velocity gradually over time, towards given advance_value or
by given advance_value.

The advance_value param must be a number and is the target angular velocity value (or angular velocity
change value), in radians

Refer to the Common transition parameters and Examples sections for information on other parameters used by
the transition.

2.14.9 NodeSpriteTransition reference

class transitions.NodeSpriteTransition(sprites, duration, loops=1, back_and_forth=False,
easing=Easing.none)

Use this transition to create animations. The transition will change Node’s sprite over time specified by the
duration parameter, iterating through sprites list specified by the sprites parameter.

144 Chapter 2. Kaa engine Reference

kaaengine

The sprites must be an iterable holding sprites.Sprite instances. To cut a spritesheet file into individ-
ual sprites (individual frames) use the utility function sprites.split_spritesheet()

The loops and back_and_forth parameters work normally - refer to the Common transition parameters
section for more information on those parameters.

2.14.10 NodeZIndexSteppingTransition reference

class transitions.NodeZIndexSteppingTransition(z_index_list, duration, loops=1,
back_and_forth=False, eas-
ing=Easing.none)

Allows to change z_index of a node over time.

The z_index_list must be an iterable with z_index values.

2.14.11 NodeTransitionsSequence reference

class transitions.NodeTransitionSequence(transitions, loops=1, back_and_forth=False)
A wrapping container used to chain transitions into a sequence. The sequence will run one transition at a time,
next one being executed when the previous one finishes.

The transitions parameter is an iterable of transitions.

The iterable can include a list of ‘atomic’ transitions such as NodePositionTransition,
NodeScaleTransition, NodeColorTransition etc. as well as other
NodeTransitionSequence, or NodeTransitionsParallel thus building a more complex
structure.

The loops and back_and_forth parameters work normally, but are applied to the whole sequence.

See the Examples sections for a sample code using NodeTransitionSequence.

2.14.12 NodeTransitionsParallel reference

class transitions.NodeTransitionsParallel(transitions, loops=1, back_and_forth=False)
A wrapping container used to make transitions run in parallel.

The transitions parameter is an iterable of transitions which will be executed simultaneously.

The iterable can include a list of ‘atomic’ transitions such as NodePositionTransition,
NodeScaleTransition, NodeColorTransition etc. as well as other
NodeTransitionSequence, or NodeTransitionsParallel thus building a more complex
structure.

You may have two contradictory transitions running in parallel, for example two
NodePositionTransition trying to change node position in opposite directions. Contrary to intu-
ition, they won’t cancel out (regardless of advance_method being add or set). If there are two or more
transitions of the same type running in paralel, then the one which is later in the list will be used and all the
preceding ones will be ignored.

Since transitions runing in parallel may have different durations, the loops parameter is using the following
logic: The longest duration is considered the “base” duration. Transitions whose duration is shorter than the
base duration will wait (doing nothing) when they complete, until the one with the “base” duration ends. When
the “base” transition ends, the new loop begins and all transitions start running in parallel again.

The back_and_forth=True is using the same logic: the engine will wait for the longest transition to end
before playing all parallel transitions backwards.

2.14. transitions — A quick and easy way to automate transforming your nodes 145

kaaengine

See the Examples sections for a sample code using NodeTransitionsParallel.

Like all other transitions, NodeTransitionsParallel is immutable. That causes problems when you want transi-
tions to be managed independently. Consider a situation where you want to have a Node with sprite animation
(NodeSpriteTransition) and some other transition (e.g. NodePositionTransition), both running simuntaneously.
Suppose you do that by wrapping the two transitions in NodeTransitionsParallel. Now, if you want to
change just the sprite animation transition without changing the state of the position transition (a perfectly
valid case in many 2D games), you won’t be able to do that because NodeTransitionsParallel is immutable!

To solve that problem, you should use NodeTransitionsManager - it allows running and managing mul-
tiple simultaneous transitions on a Node truly independently from each other.

2.14.13 NodeTransitionDelay reference

class transitions.NodeTransitionDelay(duration)
Use this transition to create a delay between transitions in a sequence.

The duration parameter is a number of seconds.

See the Examples sections for more information.

2.14.14 NodeTransitionCallback reference

class transitions.NodeTransitionCallback(callback_func)
Use this transition to get your own function called at a specific moment in a transitions sequence. A typical use
case is to find out that a transition has ended.

The callback_func must be a callable.

See the Examples sections for a sample code using NodeTransitionCallback

2.14.15 NodeCustomTransition reference

class transitions.NodeCustomTransition(prepare_func, evaluate_func, duration, loops=1,
back_and_forth=False, easing=Easing.none)

Use this class to write your own transition.

prepare_func must be a callable. It will be called once, before the transition is played. It receives one
parameter - a node. It can return any value, which will later be used as input to evaluate_func

evaluate_func must be a callable. It will be called on each frame and it’s the place where you should
implement the transition logic. It will receive three parameters: state, node and t. The state is a value
you have returned in the prepare_func callable. The node is a node which is transitioning. The t parameter
is a value between 0 and 1 which indicates transition time duration progress.

The loops and back_and_forth paramters behave normally - see the Common transition parameters sec-
tion.

custom_transition = NodeCustomTransition(
lambda node: {'positions': [

Vector(random.uniform(-100, 100), random.uniform(-100, 100))
for _ in range(10)

]},
lambda state, node, t: setattr(

node, 'position',
state['positions'][min(int(t * 10), 9)],

(continues on next page)

146 Chapter 2. Kaa engine Reference

kaaengine

(continued from previous page)

),
10.,
loops=5,

)

2.14.16 NodeTransitionsManager reference

class transitions.NodeTransitionsManager
Node Transitions Manager is accessed by the transitions_manager property on a nodes.Node. It allows to
run multiple transitions on a node at the same time. Unlike NodeTransitionsParallel, which also runs
multiple transitions simultaneously, the transitions managed by the NodeTransitionsManager are truly isolated.
It means you can manage them (stop or replace them) individually not affecting other running transitions. This
is not possible with transitions inside NodeTransitionsParallel, because the wrapper is immutable.

The manager offers a simple dictionary-like interface with two methods: get() and set() to access and set
transitions by a string key.

Note that the transition manager is used when you set transition on a Node via the transition property. That
transition can be accessed via get('__default__')

Similarly to NodeTransitionsParallel when you set two contradictory transitions of the same type
to run on the manager (for example position transitions that pull the node in two opposite direction) - they
will not cancel out. One of them will ‘dominate’. It is undetermined which one will dominate therefore it’s
recommended not to compose transitions that way (why would you want to do it anyway?).

NodeTransitionsManager.get(transition_name)
Gets a transition by name (a string).

Node.transitions_manager.get('__default__') is an equivalent of Node.transition getter.

NodeTransitionsManager.set(transition_name, transition)
Sets a transition with a specific name (a string). The transition object can be any transition, either ‘atomic’
or a serial / parallel combo.

Node.transitions_manager.set('__default__', transition) is an equivalent of
Node.transition setter.

node = Node(position=Vector(15, 60))
node.transitions_manager.set('my_transition', NodePositionTransition(Vector(100,
→˓100), duration=0.300, loops=0))
node.transitions_manager.set('other_transition', NodeRotationTransition(math.pi/
→˓2))
node.transitions_manager.set('can_use_sequence_coz_why_not',
→˓NodeTransitionsSequence([

NodeScaleTransition(Vector(2, 2), 1.),
NodeTransitionDelay(2.),
NodeColorTransition(Color(0.5, 1, 0, 1), 3.)],
loops=2, back_and_forth=True))

2.14.17 AttributeTransitionMethod reference

class transitions.AttributeTransitionMethod

Enum type used to identify value advance method when using transitions

Available values are:

2.14. transitions — A quick and easy way to automate transforming your nodes 147

kaaengine

• AttributeTransitionMethod.set

• AttributeTransitionMethod.add

• AttributeTransitionMethod.multiply

2.15 All kaa imports cheat sheet

from kaa.audio import Sound, SoundPlayback, Music, AudioStatus

from kaa.colors import Color

from kaa.easings import Easing, ease, ease_between

from kaa.engine import Engine, Scene, VirtualResolutionMode, get_engine

from kaa.fonts import Font, TextNode

from kaa.geometry import Vector, Segment, Circle, Polygon, PolygonType, Alignment,
→˓Transformation, BoundingBox, classify_polygon

from kaa.input import Event, Keycode, MouseButton, ControllerButton, ControllerAxis,
→˓CompoundControllerAxis

from kaa.log import get_core_logging_level, set_core_logging_level, CoreLogLevel,
→˓CoreHandler,

from kaa.nodes import Node

from kaa.physics import SpaceNode, BodyNode, HitboxNode, BodyNodeType, CollisionPhase

from kaa.renderer import Renderer

from kaa.statistics import get_global_statistics_manager, StatisticsManager,
→˓StatisticAnalysis

from kaa.sprites import Sprite, split_spritesheet

from kaa.timers import Timer

from kaa.transitions import NodeTransitionsSequence, NodeTransitionsParallel,
→˓NodeCustomTransition,

AttributeTransitionMethod, NodePositionTransition, NodeRotationTransition,
→˓NodeScaleTransition,

NodeColorTransition, BodyNodeVelocityTransition,
→˓BodyNodeAngularVelocityTransition, NodeTransitionDelay,

NodeTransitionCallback, NodeSpriteTransition, NodeZIndexSteppingTransition

148 Chapter 2. Kaa engine Reference

PYTHON MODULE INDEX

a
audio, 65

c
colors, 67

e
easings, 68
engine, 70

f
fonts, 84

g
geometry, 86

i
input, 94

l
log, 116

n
nodes, 117

p
physics, 124

s
sprites, 137
statistics, 135

t
timers, 139
transitions, 140

149

kaaengine

150 Python Module Index

INDEX

Symbols
__bool__() (nodes.Node method), 124

A
a (colors.Color attribute), 67
absolute_position (nodes.Node attribute), 118
absolute_rotation (nodes.Node attribute), 119
absolute_rotation_degrees (nodes.Node

attribute), 119
absolute_scale (nodes.Node attribute), 120
absolute_transformation (nodes.Node at-

tribute), 122
add_child() (nodes.Node method), 123
Alignment (class in geometry), 93
angle_between() (geometry.Vector method), 88
angle_between_degrees() (geometry.Vector

method), 88
angular_velocity (physics.BodyNode attribute),

130
angular_velocity_degrees (physics.BodyNode

attribute), 130
apply_force_at() (physics.BodyNode method), 131
apply_force_at_local() (physics.BodyNode

method), 130
apply_impulse_at() (physics.BodyNode method),

131
apply_impulse_at_local() (physics.BodyNode

method), 131
Arbiter (class in physics), 134
AttributeTransitionMethod (class in transi-

tions), 147
audio (engine.Engine attribute), 72
audio (module), 65
AudioEvent (class in input), 106
AudioManager (class in engine), 81
AudioStatus (class in audio), 67
axis (input.ControllerAxisEvent attribute), 105

B
b (colors.Color attribute), 67
body_type (physics.BodyNode attribute), 129
BodyNode (class in physics), 128

BodyNodeAngularVelocityTransition (class
in transitions), 144

BodyNodeType (class in physics), 134
BodyNodeVelocityTransition (class in transi-

tions), 144
bounding_box (geometry.Circle attribute), 89
bounding_box (geometry.Polygon attribute), 90
bounding_box (geometry.Segment attribute), 88
bounding_box (nodes.Node attribute), 123
BoundingBox (class in geometry), 92
button (input.ControllerButtonEvent attribute), 105
button (input.MouseButtonEvent attribute), 103

C
Camera (class in engine), 82
camera (engine.Scene attribute), 75
camera (engine.View attribute), 79
center (geometry.BoundingBox attribute), 93
center (geometry.Circle attribute), 89
center() (engine.Window method), 80
change_scene() (engine.Engine method), 72
children (nodes.Node attribute), 117
Circle (class in geometry), 89
classify_polygon() (in module geometry), 94
clear_color (engine.Scene attribute), 76
clear_color (engine.View attribute), 79
clipboard_updated (input.SystemEvent attribute),

107
collision_mask (physics.HitboxNode attribute), 133
CollisionContactPoint (class in physics), 134
CollisionPair (class in physics), 134
CollisionPhase (class in physics), 135
Color (class in colors), 67
color (nodes.Node attribute), 121
colors (module), 67
CompoundControllerAxis (class in input), 116
contains() (geometry.BoundingBox method), 93
controller (input.InputManager attribute), 95
ControllerAxis (class in input), 115
ControllerAxisEvent (class in input), 105
ControllerButton (class in input), 115
ControllerButtonEvent (class in input), 105

151

kaaengine

ControllerDeviceEvent (class in input), 104
ControllerManager (class in input), 97
CoreLogLevel (class in log), 116
crop() (sprites.Sprite method), 137
current_scene (engine.Engine attribute), 71
cursor_visible (input.InputManager attribute), 95
cursor_visible (input.MouseManager attribute), 97

D
damping (physics.SpaceNode attribute), 125
decompose() (geometry.Transformation method), 91
DecomposedTransformation (class in geometry),

92
delete() (nodes.Node method), 123
dimensions (engine.View attribute), 79
dimensions (geometry.BoundingBox attribute), 93
Display (class in engine), 82
distance() (geometry.Vector method), 88
dot() (geometry.Vector method), 88

E
ease() (in module easings), 69
ease_between() (in module easings), 70
Easing (class in easings), 68
easings (module), 68
effective_views (nodes.Node attribute), 123
effective_z_index (nodes.Node attribute), 118
elasticity (physics.HitboxNode attribute), 133
Engine (class in engine), 70
engine (engine.Scene attribute), 75
engine (module), 70
Event (class in input), 100
events() (input.InputManager method), 95

F
first_line_indent (fonts.TextNode attribute), 86
Font (class in fonts), 84
font_size (fonts.TextNode attribute), 86
fonts (module), 84
force (physics.BodyNode attribute), 129
friction (physics.HitboxNode attribute), 133
from_angle() (geometry.Vector class method), 87
from_angle_degrees() (geometry.Vector class

method), 87
from_box() (geometry.Polygon class method), 89
from_int() (colors.Color class method), 68
from_points() (geometry.BoundingBox class

method), 92
fullscreen (engine.Window attribute), 79

G
g (colors.Color attribute), 67
geometry (module), 86

get() (transitions.NodeTransitionsManager method),
147

get_analysis_all() (statistics.StatisticsManager
method), 136

get_axis_motion() (input.ControllerManager
method), 99

get_clipboard_text() (input.SystemManager
method), 100

get_core_logging_level() (in module log), 116
get_current() (audio.Music class method), 66
get_displays() (engine.Engine method), 73
get_engine() (in module engine), 84
get_fps() (engine.Engine method), 74
get_global_statistics_manager() (in mod-

ule statistics), 136
get_last_all() (statistics.StatisticsManager

method), 136
get_name() (input.ControllerManager method), 99
get_position() (input.MouseManager method), 97
get_relative_position() (nodes.Node method),

124
get_relative_transformation() (nodes.Node

method), 124
get_sticks() (input.ControllerManager method), 99
get_triggers() (input.ControllerManager method),

99
gravity (physics.SpaceNode attribute), 125
group (physics.HitboxNode attribute), 132
grow() (geometry.BoundingBox method), 93

H
hide() (engine.Window method), 80
HitboxNode (class in physics), 131

I
id (input.ControllerAxisEvent attribute), 105
id (input.ControllerButtonEvent attribute), 105
id (input.ControllerDeviceEvent attribute), 104
index (engine.Display attribute), 82
indexable (nodes.Node attribute), 123
input (engine.Scene attribute), 75
input (module), 94
InputManager (class in input), 94
interline_spacing (fonts.TextNode attribute), 86
intersection() (geometry.BoundingBox method),

93
intersects() (geometry.BoundingBox method), 93
interval (timers.TimerContext attribute), 140
inverse() (geometry.Transformation method), 91
is_added (input.ControllerDeviceEvent attribute), 104
is_axis_pressed() (input.ControllerManager

method), 99
is_axis_released() (input.ControllerManager

method), 99

152 Index

kaaengine

is_button_down (input.ControllerButtonEvent at-
tribute), 105

is_button_down (input.MouseButtonEvent at-
tribute), 103

is_button_up (input.ControllerButtonEvent at-
tribute), 105

is_button_up (input.MouseButtonEvent attribute),
103

is_close (input.WindowEvent attribute), 106
is_connected() (input.ControllerManager method),

98
is_enter (input.WindowEvent attribute), 106
is_exposed (input.WindowEvent attribute), 106
is_focus_gained (input.WindowEvent attribute),

106
is_focus_lost (input.WindowEvent attribute), 106
is_key_down (input.KeyboardEvent attribute), 102
is_key_up (input.KeyboardEvent attribute), 102
is_leave (input.WindowEvent attribute), 106
is_maximized (input.WindowEvent attribute), 106
is_minimized (input.WindowEvent attribute), 106
is_moved (input.WindowEvent attribute), 106
is_nan (geometry.BoundingBox attribute), 93
is_paused (audio.Music attribute), 66
is_paused (audio.SoundPlayback attribute), 66
is_playing (audio.Music attribute), 66
is_playing (audio.SoundPlayback attribute), 66
is_pressed() (input.ControllerManager method), 98
is_pressed() (input.KeyboardManager method), 96
is_pressed() (input.MouseManager method), 97
is_released() (input.ControllerManager method),

99
is_released() (input.KeyboardManager method),

96
is_released() (input.MouseManager method), 97
is_removed (input.ControllerDeviceEvent attribute),

105
is_resized (input.WindowEvent attribute), 106
is_restored (input.WindowEvent attribute), 106
is_running (timers.Timer attribute), 139
is_shown (input.WindowEvent attribute), 106
is_zero() (geometry.Vector method), 87

K
key (input.KeyboardEvent attribute), 102
keyboard (input.InputManager attribute), 94
KeyboardKeyEvent (class in input), 102
KeyboardManager (class in input), 96
KeyboardTextEvent (class in input), 102
Keycode (class in input), 107

L
last_value (statistics.StatisticAnalysis attribute), 136
length() (geometry.Vector method), 88

lifetime (nodes.Node attribute), 122
line_width (fonts.TextNode attribute), 86
local_force (physics.BodyNode attribute), 129
log (module), 116

M
mask (physics.HitboxNode attribute), 132
mass (physics.BodyNode attribute), 130
master_music_volume (engine.AudioManager at-

tribute), 81
master_sound_volume (engine.AudioManager at-

tribute), 81
master_volume (engine.AudioManager attribute), 81
max_value (statistics.StatisticAnalysis attribute), 136
max_x (geometry.BoundingBox attribute), 92
max_y (geometry.BoundingBox attribute), 92
maximize() (engine.Window method), 80
mean_value (statistics.StatisticAnalysis attribute), 136
merge() (geometry.BoundingBox method), 93
min_value (statistics.StatisticAnalysis attribute), 136
min_x (geometry.BoundingBox attribute), 92
min_y (geometry.BoundingBox attribute), 92
minimize() (engine.Window method), 80
mixing_channels (engine.AudioManager attribute),

81
moment (physics.BodyNode attribute), 130
motion (input.ControllerAxisEvent attribute), 106
motion (input.MouseMotionEvent attribute), 104
mouse (input.InputManager attribute), 94
MouseButton (class in input), 114
MouseButtonEvent (class in input), 103
MouseManager (class in input), 96
MouseMotionEvent (class in input), 103
MouseWheelEvent (class in input), 104
Music (class in audio), 66
music_finished (input.AudioEvent attribute), 106

N
name (engine.Display attribute), 82
Node (class in nodes), 117
NodeColorTransition (class in transitions), 144
NodeCustomTransition (class in transitions), 146
NodePositionTransition (class in transitions),

143
NodeRotationTransition (class in transitions),

143
nodes (module), 117
NodeScaleTransition (class in transitions), 143
NodeSpriteTransition (class in transitions), 144
NodeTransitionCallback (class in transitions),

146
NodeTransitionDelay (class in transitions), 146
NodeTransitionSequence (class in transitions),

145

Index 153

kaaengine

NodeTransitionsManager (class in transitions),
147

NodeTransitionsParallel (class in transitions),
145

NodeZIndexSteppingTransition (class in tran-
sitions), 145

normalize() (geometry.Vector method), 88

O
on_attach() (nodes.Node method), 124
on_detach() (nodes.Node method), 124
on_enter() (engine.Scene method), 77
on_exit() (engine.Scene method), 77
origin (engine.View attribute), 79
origin (sprites.Sprite attribute), 137
origin_alignment (nodes.Node attribute), 122

P
parent (nodes.Node attribute), 118
pause() (audio.Music method), 67
pause() (audio.SoundPlayback method), 66
physics (module), 124
play() (audio.Music method), 67
play() (audio.Sound method), 65
play() (audio.SoundPlayback method), 66
point_a (geometry.Segment attribute), 88
point_b (geometry.Segment attribute), 88
PointQueryResult (class in physics), 135
points (geometry.Polygon attribute), 90
Polygon (class in geometry), 89
PolygonType (class in geometry), 94
position (engine.Camera attribute), 82
position (engine.Display attribute), 82
position (engine.Window attribute), 80
position (input.MouseButtonEvent attribute), 103
position (input.MouseMotionEvent attribute), 104
position (nodes.Node attribute), 118
push_value() (statistics.StatisticsManager method),

136

Q
query_bounding_box() (en-

gine.SpatialIndexManager method), 78
query_point() (engine.SpatialIndexManager

method), 78
query_point_neighbors() (physics.SpaceNode

method), 128
query_ray() (physics.SpaceNode method), 127
query_shape_overlaps() (physics.SpaceNode

method), 126
quit (input.SystemEvent attribute), 107
quit() (engine.Engine method), 74

R
r (colors.Color attribute), 67
radius (geometry.Circle attribute), 89
RayQueryResult (class in physics), 135
register_callback() (input.InputManager

method), 95
relative_mode (input.MouseManager attribute), 97
restore() (engine.Window method), 80
resume() (audio.Music method), 67
resume() (audio.SoundPlayback method), 66
root (engine.Scene attribute), 76
root_distance (nodes.Node attribute), 118
rotate() (geometry.Transformation class method), 91
rotate_angle() (geometry.Vector method), 87
rotate_angle_degrees() (geometry.Vector

method), 87
rotate_degrees() (geometry.Transformation class

method), 91
rotation (engine.Camera attribute), 82
rotation (geometry.DecomposedTransformation at-

tribute), 92
rotation (nodes.Node attribute), 119
rotation_degrees (engine.Camera attribute), 83
rotation_degrees (geome-

try.DecomposedTransformation attribute),
92

rotation_degrees (nodes.Node attribute), 119
run() (engine.Engine method), 74

S
samples_count (statistics.StatisticAnalysis attribute),

136
scale (engine.Camera attribute), 83
scale (geometry.DecomposedTransformation at-

tribute), 92
scale (nodes.Node attribute), 119
scale() (geometry.Transformation class method), 91
Scene (class in engine), 74
scene (nodes.Node attribute), 118
scene (timers.TimerContext attribute), 140
scroll (input.MouseWheelEvent attribute), 104
Segment (class in geometry), 88
sensor (physics.HitboxNode attribute), 133
set() (transitions.NodeTransitionsManager method),

147
set_clipboard_text() (input.SystemManager

method), 100
set_collision_handler() (physics.SpaceNode

method), 126
set_core_logging_level() (in module log), 116
shape (nodes.Node attribute), 121
shape (physics.HitboxNode attribute), 132
ShapeQueryResult (class in physics), 133
show() (engine.Window method), 80

154 Index

kaaengine

single_point() (geometry.BoundingBox class
method), 92

size (engine.Display attribute), 82
size (engine.Window attribute), 80
size (sprites.Sprite attribute), 137
sleeping (physics.BodyNode attribute), 130
sleeping_threshold (physics.SpaceNode at-

tribute), 125
sound (audio.SoundPlayback attribute), 65
Sound (class in audio), 65
SoundPlayback (class in audio), 65
SpaceNode (class in physics), 125
spatial_index (engine.Scene attribute), 77
SpatialIndexManager (class in engine), 77
split_spritesheet() (in module sprites), 138
Sprite (class in sprites), 137
sprite (nodes.Node attribute), 120
sprites (module), 137
standard_deviation (statistics.StatisticAnalysis at-

tribute), 136
start() (timers.Timer method), 139
start_global() (timers.Timer method), 139
StatisticAnalysis (class in statistics), 136
statistics (module), 135
StatisticsManager (class in statistics), 136
status (audio.Music attribute), 66
status (audio.SoundPlayback attribute), 66
stop() (audio.Music method), 67
stop() (audio.SoundPlayback method), 66
stop() (engine.Engine method), 74
stop() (timers.Timer method), 140
surface_velocity (physics.HitboxNode attribute),

133
system (input.InputManager attribute), 95
SystemEvent (class in input), 107
SystemManager (class in input), 100

T
text (fonts.TextNode attribute), 86
text (input.KeyboardTextEvent attribute), 102
TextNode (class in fonts), 85
time_scale (engine.Scene attribute), 77
Timer (class in timers), 139
timers (module), 139
title (engine.Window attribute), 80
to_angle() (geometry.Vector method), 88
to_angle_degrees() (geometry.Vector method), 88
torque (physics.BodyNode attribute), 130
torque_degrees (physics.BodyNode attribute), 130
transform() (geometry.Circle method), 89
transform() (geometry.Polygon method), 90
transform() (geometry.Segment method), 88
Transformation (class in geometry), 90
transformation (nodes.Node attribute), 122

transition (nodes.Node attribute), 122
transitions (module), 140
transitions_manager (nodes.Node attribute), 122
translate() (geometry.Transformation class

method), 91
translation (geometry.DecomposedTransformation

attribute), 92
trigger_id (physics.HitboxNode attribute), 133

U
unproject_position() (engine.Camera method),

83
update() (engine.Scene method), 77

V
Vector (class in geometry), 86
velocity (physics.BodyNode attribute), 130
View (class in engine), 78
views (engine.Scene attribute), 75
views (nodes.Node attribute), 122
virtual_resolution (engine.Engine attribute), 71
virtual_resolution_mode (engine.Engine

attribute), 72
VirtualResolutionMode (class in engine), 84
visible (nodes.Node attribute), 120
visible_area_bounding_box (engine.Camera at-

tribute), 83
volume (audio.Music attribute), 67
volume (audio.Sound attribute), 65
volume (audio.SoundPlayback attribute), 66

W
Window (class in engine), 79
window (engine.Engine attribute), 72
WindowEvent (class in input), 106

X
x (geometry.Vector attribute), 87

Y
y (geometry.Vector attribute), 87

Z
z_index (engine.View attribute), 79
z_index (nodes.Node attribute), 118

Index 155

	Tutorial
	Part 1: Engine and window
	Part 2: Sprites and nodes
	Part 3: Organizing the game code
	Part 4: Handling Input
	Part 5: Physics
	Part 6: Sound effects and music
	Part 7: Drawing text
	Part 8: Working with multiple scenes
	Part 9: The camera
	Part 10: Transitions
	Part 11: Building executable file and distributing via Steam

	Kaa engine Reference
	audio — Sound effects and music
	colors — Wrapper class for colors
	easings — Easing effects for transitions
	engine — Engine and Scenes: The core of your game
	fonts — Drawing text on screen
	geometry — wrapper classes for vectors, segments, polygons etc.
	input — Handling input from keyboard, mouse and controllers
	log — kaaengine logging settings
	nodes — Your objects on the scene
	physics — A 2D physics system, with rigid bodies, collisions and more!
	statistics — Statistics module
	sprites — Using image assets
	timers — a simple timer
	transitions — A quick and easy way to automate transforming your nodes
	All kaa imports cheat sheet

	Python Module Index
	Index

